Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sdc Structured version   Visualization version   GIF version

Theorem sdc 33540
Description: Strong dependent choice. Suppose we may choose an element of 𝐴 such that property 𝜓 holds, and suppose that if we have already chosen the first 𝑘 elements (represented here by a function from 1...𝑘 to 𝐴), we may choose another element so that all 𝑘 + 1 elements taken together have property 𝜓. Then there exists an infinite sequence of elements of 𝐴 such that the first 𝑛 terms of this sequence satisfy 𝜓 for all 𝑛. This theorem allows us to construct infinite seqeunces where each term depends on all the previous terms in the sequence. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 3-Jun-2014.)
Hypotheses
Ref Expression
sdc.1 𝑍 = (ℤ𝑀)
sdc.2 (𝑔 = (𝑓 ↾ (𝑀...𝑛)) → (𝜓𝜒))
sdc.3 (𝑛 = 𝑀 → (𝜓𝜏))
sdc.4 (𝑛 = 𝑘 → (𝜓𝜃))
sdc.5 ((𝑔 = 𝑛 = (𝑘 + 1)) → (𝜓𝜎))
sdc.6 (𝜑𝐴𝑉)
sdc.7 (𝜑𝑀 ∈ ℤ)
sdc.8 (𝜑 → ∃𝑔(𝑔:{𝑀}⟶𝐴𝜏))
sdc.9 ((𝜑𝑘𝑍) → ((𝑔:(𝑀...𝑘)⟶𝐴𝜃) → ∃(:(𝑀...(𝑘 + 1))⟶𝐴𝑔 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)))
Assertion
Ref Expression
sdc (𝜑 → ∃𝑓(𝑓:𝑍𝐴 ∧ ∀𝑛𝑍 𝜒))
Distinct variable groups:   𝑓,𝑔,,𝑘,𝑛,𝐴   𝑓,𝑀,𝑔,,𝑘,𝑛   𝜒,𝑔   𝜓,𝑓,,𝑘   𝜎,𝑓,𝑔,𝑛   𝜑,𝑛   𝜃,𝑛   ,𝑉   𝜏,,𝑘,𝑛   𝑓,𝑍,𝑔,,𝑘,𝑛   𝜑,𝑔,,𝑘
Allowed substitution hints:   𝜑(𝑓)   𝜓(𝑔,𝑛)   𝜒(𝑓,,𝑘,𝑛)   𝜃(𝑓,𝑔,,𝑘)   𝜏(𝑓,𝑔)   𝜎(,𝑘)   𝑉(𝑓,𝑔,𝑘,𝑛)

Proof of Theorem sdc
Dummy variables 𝑗 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sdc.1 . 2 𝑍 = (ℤ𝑀)
2 sdc.2 . 2 (𝑔 = (𝑓 ↾ (𝑀...𝑛)) → (𝜓𝜒))
3 sdc.3 . 2 (𝑛 = 𝑀 → (𝜓𝜏))
4 sdc.4 . 2 (𝑛 = 𝑘 → (𝜓𝜃))
5 sdc.5 . 2 ((𝑔 = 𝑛 = (𝑘 + 1)) → (𝜓𝜎))
6 sdc.6 . 2 (𝜑𝐴𝑉)
7 sdc.7 . 2 (𝜑𝑀 ∈ ℤ)
8 sdc.8 . 2 (𝜑 → ∃𝑔(𝑔:{𝑀}⟶𝐴𝜏))
9 sdc.9 . 2 ((𝜑𝑘𝑍) → ((𝑔:(𝑀...𝑘)⟶𝐴𝜃) → ∃(:(𝑀...(𝑘 + 1))⟶𝐴𝑔 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)))
10 eqid 2622 . 2 {𝑔 ∣ ∃𝑛𝑍 (𝑔:(𝑀...𝑛)⟶𝐴𝜓)} = {𝑔 ∣ ∃𝑛𝑍 (𝑔:(𝑀...𝑛)⟶𝐴𝜓)}
11 eqid 2622 . . . 4 𝑍 = 𝑍
12 oveq2 6658 . . . . . . . 8 (𝑛 = 𝑘 → (𝑀...𝑛) = (𝑀...𝑘))
1312feq2d 6031 . . . . . . 7 (𝑛 = 𝑘 → (𝑔:(𝑀...𝑛)⟶𝐴𝑔:(𝑀...𝑘)⟶𝐴))
1413, 4anbi12d 747 . . . . . 6 (𝑛 = 𝑘 → ((𝑔:(𝑀...𝑛)⟶𝐴𝜓) ↔ (𝑔:(𝑀...𝑘)⟶𝐴𝜃)))
1514cbvrexv 3172 . . . . 5 (∃𝑛𝑍 (𝑔:(𝑀...𝑛)⟶𝐴𝜓) ↔ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃))
1615abbii 2739 . . . 4 {𝑔 ∣ ∃𝑛𝑍 (𝑔:(𝑀...𝑛)⟶𝐴𝜓)} = {𝑔 ∣ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃)}
17 eqid 2622 . . . 4 { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑓 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)} = { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑓 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)}
1811, 16, 17mpt2eq123i 6718 . . 3 (𝑗𝑍, 𝑓 ∈ {𝑔 ∣ ∃𝑛𝑍 (𝑔:(𝑀...𝑛)⟶𝐴𝜓)} ↦ { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑓 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)}) = (𝑗𝑍, 𝑓 ∈ {𝑔 ∣ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃)} ↦ { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑓 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)})
19 eqidd 2623 . . . 4 (𝑗 = 𝑦 → { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑓 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)} = { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑓 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)})
20 eqeq1 2626 . . . . . . 7 (𝑓 = 𝑥 → (𝑓 = ( ↾ (𝑀...𝑘)) ↔ 𝑥 = ( ↾ (𝑀...𝑘))))
21203anbi2d 1404 . . . . . 6 (𝑓 = 𝑥 → ((:(𝑀...(𝑘 + 1))⟶𝐴𝑓 = ( ↾ (𝑀...𝑘)) ∧ 𝜎) ↔ (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)))
2221rexbidv 3052 . . . . 5 (𝑓 = 𝑥 → (∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑓 = ( ↾ (𝑀...𝑘)) ∧ 𝜎) ↔ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)))
2322abbidv 2741 . . . 4 (𝑓 = 𝑥 → { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑓 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)} = { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)})
2419, 23cbvmpt2v 6735 . . 3 (𝑗𝑍, 𝑓 ∈ {𝑔 ∣ ∃𝑛𝑍 (𝑔:(𝑀...𝑛)⟶𝐴𝜓)} ↦ { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑓 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)}) = (𝑦𝑍, 𝑥 ∈ {𝑔 ∣ ∃𝑛𝑍 (𝑔:(𝑀...𝑛)⟶𝐴𝜓)} ↦ { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)})
2518, 24eqtr3i 2646 . 2 (𝑗𝑍, 𝑓 ∈ {𝑔 ∣ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃)} ↦ { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑓 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)}) = (𝑦𝑍, 𝑥 ∈ {𝑔 ∣ ∃𝑛𝑍 (𝑔:(𝑀...𝑛)⟶𝐴𝜓)} ↦ { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)})
261, 2, 3, 4, 5, 6, 7, 8, 9, 10, 25sdclem1 33539 1 (𝜑 → ∃𝑓(𝑓:𝑍𝐴 ∧ ∀𝑛𝑍 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wex 1704  wcel 1990  {cab 2608  wral 2912  wrex 2913  {csn 4177  cres 5116  wf 5884  cfv 5888  (class class class)co 6650  cmpt2 6652  1c1 9937   + caddc 9939  cz 11377  cuz 11687  ...cfz 12326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-dc 9268  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator