MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqof2 Structured version   Visualization version   GIF version

Theorem seqof2 12859
Description: Distribute function operation through a sequence. Maps-to notation version of seqof 12858. (Contributed by Mario Carneiro, 7-Jul-2017.)
Hypotheses
Ref Expression
seqof2.1 (𝜑𝐴𝑉)
seqof2.2 (𝜑𝑁 ∈ (ℤ𝑀))
seqof2.3 (𝜑 → (𝑀...𝑁) ⊆ 𝐵)
seqof2.4 ((𝜑 ∧ (𝑥𝐵𝑧𝐴)) → 𝑋𝑊)
Assertion
Ref Expression
seqof2 (𝜑 → (seq𝑀( ∘𝑓 + , (𝑥𝐵 ↦ (𝑧𝐴𝑋)))‘𝑁) = (𝑧𝐴 ↦ (seq𝑀( + , (𝑥𝐵𝑋))‘𝑁)))
Distinct variable groups:   𝑥,𝑧,𝐴   𝑥,𝑀,𝑧   𝑥,𝑁,𝑧   𝜑,𝑥,𝑧   𝑧, +   𝑥,𝐵
Allowed substitution hints:   𝐵(𝑧)   + (𝑥)   𝑉(𝑥,𝑧)   𝑊(𝑥,𝑧)   𝑋(𝑥,𝑧)

Proof of Theorem seqof2
Dummy variables 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqof2.1 . . 3 (𝜑𝐴𝑉)
2 seqof2.2 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
3 nfv 1843 . . . . . 6 𝑥(𝜑𝑛 ∈ (𝑀...𝑁))
4 nffvmpt1 6199 . . . . . . 7 𝑥((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑛)
5 nfcv 2764 . . . . . . . 8 𝑥𝐴
6 nffvmpt1 6199 . . . . . . . 8 𝑥((𝑥𝐵𝑋)‘𝑛)
75, 6nfmpt 4746 . . . . . . 7 𝑥(𝑧𝐴 ↦ ((𝑥𝐵𝑋)‘𝑛))
84, 7nfeq 2776 . . . . . 6 𝑥((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑛) = (𝑧𝐴 ↦ ((𝑥𝐵𝑋)‘𝑛))
93, 8nfim 1825 . . . . 5 𝑥((𝜑𝑛 ∈ (𝑀...𝑁)) → ((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑛) = (𝑧𝐴 ↦ ((𝑥𝐵𝑋)‘𝑛)))
10 eleq1 2689 . . . . . . 7 (𝑥 = 𝑛 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑛 ∈ (𝑀...𝑁)))
1110anbi2d 740 . . . . . 6 (𝑥 = 𝑛 → ((𝜑𝑥 ∈ (𝑀...𝑁)) ↔ (𝜑𝑛 ∈ (𝑀...𝑁))))
12 fveq2 6191 . . . . . . 7 (𝑥 = 𝑛 → ((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑥) = ((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑛))
13 fveq2 6191 . . . . . . . 8 (𝑥 = 𝑛 → ((𝑥𝐵𝑋)‘𝑥) = ((𝑥𝐵𝑋)‘𝑛))
1413mpteq2dv 4745 . . . . . . 7 (𝑥 = 𝑛 → (𝑧𝐴 ↦ ((𝑥𝐵𝑋)‘𝑥)) = (𝑧𝐴 ↦ ((𝑥𝐵𝑋)‘𝑛)))
1512, 14eqeq12d 2637 . . . . . 6 (𝑥 = 𝑛 → (((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑥) = (𝑧𝐴 ↦ ((𝑥𝐵𝑋)‘𝑥)) ↔ ((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑛) = (𝑧𝐴 ↦ ((𝑥𝐵𝑋)‘𝑛))))
1611, 15imbi12d 334 . . . . 5 (𝑥 = 𝑛 → (((𝜑𝑥 ∈ (𝑀...𝑁)) → ((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑥) = (𝑧𝐴 ↦ ((𝑥𝐵𝑋)‘𝑥))) ↔ ((𝜑𝑛 ∈ (𝑀...𝑁)) → ((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑛) = (𝑧𝐴 ↦ ((𝑥𝐵𝑋)‘𝑛)))))
17 seqof2.3 . . . . . . . 8 (𝜑 → (𝑀...𝑁) ⊆ 𝐵)
1817sselda 3603 . . . . . . 7 ((𝜑𝑥 ∈ (𝑀...𝑁)) → 𝑥𝐵)
191adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑀...𝑁)) → 𝐴𝑉)
20 mptexg 6484 . . . . . . . 8 (𝐴𝑉 → (𝑧𝐴𝑋) ∈ V)
2119, 20syl 17 . . . . . . 7 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝑧𝐴𝑋) ∈ V)
22 eqid 2622 . . . . . . . 8 (𝑥𝐵 ↦ (𝑧𝐴𝑋)) = (𝑥𝐵 ↦ (𝑧𝐴𝑋))
2322fvmpt2 6291 . . . . . . 7 ((𝑥𝐵 ∧ (𝑧𝐴𝑋) ∈ V) → ((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑥) = (𝑧𝐴𝑋))
2418, 21, 23syl2anc 693 . . . . . 6 ((𝜑𝑥 ∈ (𝑀...𝑁)) → ((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑥) = (𝑧𝐴𝑋))
2518adantr 481 . . . . . . . 8 (((𝜑𝑥 ∈ (𝑀...𝑁)) ∧ 𝑧𝐴) → 𝑥𝐵)
26 simpll 790 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀...𝑁)) ∧ 𝑧𝐴) → 𝜑)
27 simpr 477 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀...𝑁)) ∧ 𝑧𝐴) → 𝑧𝐴)
28 seqof2.4 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑧𝐴)) → 𝑋𝑊)
2926, 25, 27, 28syl12anc 1324 . . . . . . . 8 (((𝜑𝑥 ∈ (𝑀...𝑁)) ∧ 𝑧𝐴) → 𝑋𝑊)
30 eqid 2622 . . . . . . . . 9 (𝑥𝐵𝑋) = (𝑥𝐵𝑋)
3130fvmpt2 6291 . . . . . . . 8 ((𝑥𝐵𝑋𝑊) → ((𝑥𝐵𝑋)‘𝑥) = 𝑋)
3225, 29, 31syl2anc 693 . . . . . . 7 (((𝜑𝑥 ∈ (𝑀...𝑁)) ∧ 𝑧𝐴) → ((𝑥𝐵𝑋)‘𝑥) = 𝑋)
3332mpteq2dva 4744 . . . . . 6 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝑧𝐴 ↦ ((𝑥𝐵𝑋)‘𝑥)) = (𝑧𝐴𝑋))
3424, 33eqtr4d 2659 . . . . 5 ((𝜑𝑥 ∈ (𝑀...𝑁)) → ((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑥) = (𝑧𝐴 ↦ ((𝑥𝐵𝑋)‘𝑥)))
359, 16, 34chvar 2262 . . . 4 ((𝜑𝑛 ∈ (𝑀...𝑁)) → ((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑛) = (𝑧𝐴 ↦ ((𝑥𝐵𝑋)‘𝑛)))
36 nfcv 2764 . . . . 5 𝑦((𝑥𝐵𝑋)‘𝑛)
37 nfcsb1v 3549 . . . . . 6 𝑧𝑦 / 𝑧(𝑥𝐵𝑋)
38 nfcv 2764 . . . . . 6 𝑧𝑛
3937, 38nffv 6198 . . . . 5 𝑧(𝑦 / 𝑧(𝑥𝐵𝑋)‘𝑛)
40 csbeq1a 3542 . . . . . 6 (𝑧 = 𝑦 → (𝑥𝐵𝑋) = 𝑦 / 𝑧(𝑥𝐵𝑋))
4140fveq1d 6193 . . . . 5 (𝑧 = 𝑦 → ((𝑥𝐵𝑋)‘𝑛) = (𝑦 / 𝑧(𝑥𝐵𝑋)‘𝑛))
4236, 39, 41cbvmpt 4749 . . . 4 (𝑧𝐴 ↦ ((𝑥𝐵𝑋)‘𝑛)) = (𝑦𝐴 ↦ (𝑦 / 𝑧(𝑥𝐵𝑋)‘𝑛))
4335, 42syl6eq 2672 . . 3 ((𝜑𝑛 ∈ (𝑀...𝑁)) → ((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑛) = (𝑦𝐴 ↦ (𝑦 / 𝑧(𝑥𝐵𝑋)‘𝑛)))
441, 2, 43seqof 12858 . 2 (𝜑 → (seq𝑀( ∘𝑓 + , (𝑥𝐵 ↦ (𝑧𝐴𝑋)))‘𝑁) = (𝑦𝐴 ↦ (seq𝑀( + , 𝑦 / 𝑧(𝑥𝐵𝑋))‘𝑁)))
45 nfcv 2764 . . 3 𝑦(seq𝑀( + , (𝑥𝐵𝑋))‘𝑁)
46 nfcv 2764 . . . . 5 𝑧𝑀
47 nfcv 2764 . . . . 5 𝑧 +
4846, 47, 37nfseq 12811 . . . 4 𝑧seq𝑀( + , 𝑦 / 𝑧(𝑥𝐵𝑋))
49 nfcv 2764 . . . 4 𝑧𝑁
5048, 49nffv 6198 . . 3 𝑧(seq𝑀( + , 𝑦 / 𝑧(𝑥𝐵𝑋))‘𝑁)
5140seqeq3d 12809 . . . 4 (𝑧 = 𝑦 → seq𝑀( + , (𝑥𝐵𝑋)) = seq𝑀( + , 𝑦 / 𝑧(𝑥𝐵𝑋)))
5251fveq1d 6193 . . 3 (𝑧 = 𝑦 → (seq𝑀( + , (𝑥𝐵𝑋))‘𝑁) = (seq𝑀( + , 𝑦 / 𝑧(𝑥𝐵𝑋))‘𝑁))
5345, 50, 52cbvmpt 4749 . 2 (𝑧𝐴 ↦ (seq𝑀( + , (𝑥𝐵𝑋))‘𝑁)) = (𝑦𝐴 ↦ (seq𝑀( + , 𝑦 / 𝑧(𝑥𝐵𝑋))‘𝑁))
5444, 53syl6eqr 2674 1 (𝜑 → (seq𝑀( ∘𝑓 + , (𝑥𝐵 ↦ (𝑧𝐴𝑋)))‘𝑁) = (𝑧𝐴 ↦ (seq𝑀( + , (𝑥𝐵𝑋))‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  csb 3533  wss 3574  cmpt 4729  cfv 5888  (class class class)co 6650  𝑓 cof 6895  cuz 11687  ...cfz 12326  seqcseq 12801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802
This theorem is referenced by:  mtestbdd  24159  lgamgulm2  24762  lgamcvglem  24766
  Copyright terms: Public domain W3C validator