| Step | Hyp | Ref
| Expression |
| 1 | | seqof2.1 |
. . 3
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 2 | | seqof2.2 |
. . 3
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 3 | | nfv 1843 |
. . . . . 6
⊢
Ⅎ𝑥(𝜑 ∧ 𝑛 ∈ (𝑀...𝑁)) |
| 4 | | nffvmpt1 6199 |
. . . . . . 7
⊢
Ⅎ𝑥((𝑥 ∈ 𝐵 ↦ (𝑧 ∈ 𝐴 ↦ 𝑋))‘𝑛) |
| 5 | | nfcv 2764 |
. . . . . . . 8
⊢
Ⅎ𝑥𝐴 |
| 6 | | nffvmpt1 6199 |
. . . . . . . 8
⊢
Ⅎ𝑥((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑛) |
| 7 | 5, 6 | nfmpt 4746 |
. . . . . . 7
⊢
Ⅎ𝑥(𝑧 ∈ 𝐴 ↦ ((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑛)) |
| 8 | 4, 7 | nfeq 2776 |
. . . . . 6
⊢
Ⅎ𝑥((𝑥 ∈ 𝐵 ↦ (𝑧 ∈ 𝐴 ↦ 𝑋))‘𝑛) = (𝑧 ∈ 𝐴 ↦ ((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑛)) |
| 9 | 3, 8 | nfim 1825 |
. . . . 5
⊢
Ⅎ𝑥((𝜑 ∧ 𝑛 ∈ (𝑀...𝑁)) → ((𝑥 ∈ 𝐵 ↦ (𝑧 ∈ 𝐴 ↦ 𝑋))‘𝑛) = (𝑧 ∈ 𝐴 ↦ ((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑛))) |
| 10 | | eleq1 2689 |
. . . . . . 7
⊢ (𝑥 = 𝑛 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑛 ∈ (𝑀...𝑁))) |
| 11 | 10 | anbi2d 740 |
. . . . . 6
⊢ (𝑥 = 𝑛 → ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) ↔ (𝜑 ∧ 𝑛 ∈ (𝑀...𝑁)))) |
| 12 | | fveq2 6191 |
. . . . . . 7
⊢ (𝑥 = 𝑛 → ((𝑥 ∈ 𝐵 ↦ (𝑧 ∈ 𝐴 ↦ 𝑋))‘𝑥) = ((𝑥 ∈ 𝐵 ↦ (𝑧 ∈ 𝐴 ↦ 𝑋))‘𝑛)) |
| 13 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑥 = 𝑛 → ((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑥) = ((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑛)) |
| 14 | 13 | mpteq2dv 4745 |
. . . . . . 7
⊢ (𝑥 = 𝑛 → (𝑧 ∈ 𝐴 ↦ ((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑥)) = (𝑧 ∈ 𝐴 ↦ ((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑛))) |
| 15 | 12, 14 | eqeq12d 2637 |
. . . . . 6
⊢ (𝑥 = 𝑛 → (((𝑥 ∈ 𝐵 ↦ (𝑧 ∈ 𝐴 ↦ 𝑋))‘𝑥) = (𝑧 ∈ 𝐴 ↦ ((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑥)) ↔ ((𝑥 ∈ 𝐵 ↦ (𝑧 ∈ 𝐴 ↦ 𝑋))‘𝑛) = (𝑧 ∈ 𝐴 ↦ ((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑛)))) |
| 16 | 11, 15 | imbi12d 334 |
. . . . 5
⊢ (𝑥 = 𝑛 → (((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝑥 ∈ 𝐵 ↦ (𝑧 ∈ 𝐴 ↦ 𝑋))‘𝑥) = (𝑧 ∈ 𝐴 ↦ ((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑥))) ↔ ((𝜑 ∧ 𝑛 ∈ (𝑀...𝑁)) → ((𝑥 ∈ 𝐵 ↦ (𝑧 ∈ 𝐴 ↦ 𝑋))‘𝑛) = (𝑧 ∈ 𝐴 ↦ ((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑛))))) |
| 17 | | seqof2.3 |
. . . . . . . 8
⊢ (𝜑 → (𝑀...𝑁) ⊆ 𝐵) |
| 18 | 17 | sselda 3603 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑥 ∈ 𝐵) |
| 19 | 1 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝐴 ∈ 𝑉) |
| 20 | | mptexg 6484 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑉 → (𝑧 ∈ 𝐴 ↦ 𝑋) ∈ V) |
| 21 | 19, 20 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑧 ∈ 𝐴 ↦ 𝑋) ∈ V) |
| 22 | | eqid 2622 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐵 ↦ (𝑧 ∈ 𝐴 ↦ 𝑋)) = (𝑥 ∈ 𝐵 ↦ (𝑧 ∈ 𝐴 ↦ 𝑋)) |
| 23 | 22 | fvmpt2 6291 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐵 ∧ (𝑧 ∈ 𝐴 ↦ 𝑋) ∈ V) → ((𝑥 ∈ 𝐵 ↦ (𝑧 ∈ 𝐴 ↦ 𝑋))‘𝑥) = (𝑧 ∈ 𝐴 ↦ 𝑋)) |
| 24 | 18, 21, 23 | syl2anc 693 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝑥 ∈ 𝐵 ↦ (𝑧 ∈ 𝐴 ↦ 𝑋))‘𝑥) = (𝑧 ∈ 𝐴 ↦ 𝑋)) |
| 25 | 18 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) ∧ 𝑧 ∈ 𝐴) → 𝑥 ∈ 𝐵) |
| 26 | | simpll 790 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) ∧ 𝑧 ∈ 𝐴) → 𝜑) |
| 27 | | simpr 477 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ 𝐴) |
| 28 | | seqof2.4 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐴)) → 𝑋 ∈ 𝑊) |
| 29 | 26, 25, 27, 28 | syl12anc 1324 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) ∧ 𝑧 ∈ 𝐴) → 𝑋 ∈ 𝑊) |
| 30 | | eqid 2622 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐵 ↦ 𝑋) = (𝑥 ∈ 𝐵 ↦ 𝑋) |
| 31 | 30 | fvmpt2 6291 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝑊) → ((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑥) = 𝑋) |
| 32 | 25, 29, 31 | syl2anc 693 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) ∧ 𝑧 ∈ 𝐴) → ((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑥) = 𝑋) |
| 33 | 32 | mpteq2dva 4744 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑧 ∈ 𝐴 ↦ ((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑥)) = (𝑧 ∈ 𝐴 ↦ 𝑋)) |
| 34 | 24, 33 | eqtr4d 2659 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝑥 ∈ 𝐵 ↦ (𝑧 ∈ 𝐴 ↦ 𝑋))‘𝑥) = (𝑧 ∈ 𝐴 ↦ ((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑥))) |
| 35 | 9, 16, 34 | chvar 2262 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...𝑁)) → ((𝑥 ∈ 𝐵 ↦ (𝑧 ∈ 𝐴 ↦ 𝑋))‘𝑛) = (𝑧 ∈ 𝐴 ↦ ((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑛))) |
| 36 | | nfcv 2764 |
. . . . 5
⊢
Ⅎ𝑦((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑛) |
| 37 | | nfcsb1v 3549 |
. . . . . 6
⊢
Ⅎ𝑧⦋𝑦 / 𝑧⦌(𝑥 ∈ 𝐵 ↦ 𝑋) |
| 38 | | nfcv 2764 |
. . . . . 6
⊢
Ⅎ𝑧𝑛 |
| 39 | 37, 38 | nffv 6198 |
. . . . 5
⊢
Ⅎ𝑧(⦋𝑦 / 𝑧⦌(𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑛) |
| 40 | | csbeq1a 3542 |
. . . . . 6
⊢ (𝑧 = 𝑦 → (𝑥 ∈ 𝐵 ↦ 𝑋) = ⦋𝑦 / 𝑧⦌(𝑥 ∈ 𝐵 ↦ 𝑋)) |
| 41 | 40 | fveq1d 6193 |
. . . . 5
⊢ (𝑧 = 𝑦 → ((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑛) = (⦋𝑦 / 𝑧⦌(𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑛)) |
| 42 | 36, 39, 41 | cbvmpt 4749 |
. . . 4
⊢ (𝑧 ∈ 𝐴 ↦ ((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑛)) = (𝑦 ∈ 𝐴 ↦ (⦋𝑦 / 𝑧⦌(𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑛)) |
| 43 | 35, 42 | syl6eq 2672 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...𝑁)) → ((𝑥 ∈ 𝐵 ↦ (𝑧 ∈ 𝐴 ↦ 𝑋))‘𝑛) = (𝑦 ∈ 𝐴 ↦ (⦋𝑦 / 𝑧⦌(𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑛))) |
| 44 | 1, 2, 43 | seqof 12858 |
. 2
⊢ (𝜑 → (seq𝑀( ∘𝑓 + , (𝑥 ∈ 𝐵 ↦ (𝑧 ∈ 𝐴 ↦ 𝑋)))‘𝑁) = (𝑦 ∈ 𝐴 ↦ (seq𝑀( + , ⦋𝑦 / 𝑧⦌(𝑥 ∈ 𝐵 ↦ 𝑋))‘𝑁))) |
| 45 | | nfcv 2764 |
. . 3
⊢
Ⅎ𝑦(seq𝑀( + , (𝑥 ∈ 𝐵 ↦ 𝑋))‘𝑁) |
| 46 | | nfcv 2764 |
. . . . 5
⊢
Ⅎ𝑧𝑀 |
| 47 | | nfcv 2764 |
. . . . 5
⊢
Ⅎ𝑧
+ |
| 48 | 46, 47, 37 | nfseq 12811 |
. . . 4
⊢
Ⅎ𝑧seq𝑀( + , ⦋𝑦 / 𝑧⦌(𝑥 ∈ 𝐵 ↦ 𝑋)) |
| 49 | | nfcv 2764 |
. . . 4
⊢
Ⅎ𝑧𝑁 |
| 50 | 48, 49 | nffv 6198 |
. . 3
⊢
Ⅎ𝑧(seq𝑀( + , ⦋𝑦 / 𝑧⦌(𝑥 ∈ 𝐵 ↦ 𝑋))‘𝑁) |
| 51 | 40 | seqeq3d 12809 |
. . . 4
⊢ (𝑧 = 𝑦 → seq𝑀( + , (𝑥 ∈ 𝐵 ↦ 𝑋)) = seq𝑀( + , ⦋𝑦 / 𝑧⦌(𝑥 ∈ 𝐵 ↦ 𝑋))) |
| 52 | 51 | fveq1d 6193 |
. . 3
⊢ (𝑧 = 𝑦 → (seq𝑀( + , (𝑥 ∈ 𝐵 ↦ 𝑋))‘𝑁) = (seq𝑀( + , ⦋𝑦 / 𝑧⦌(𝑥 ∈ 𝐵 ↦ 𝑋))‘𝑁)) |
| 53 | 45, 50, 52 | cbvmpt 4749 |
. 2
⊢ (𝑧 ∈ 𝐴 ↦ (seq𝑀( + , (𝑥 ∈ 𝐵 ↦ 𝑋))‘𝑁)) = (𝑦 ∈ 𝐴 ↦ (seq𝑀( + , ⦋𝑦 / 𝑧⦌(𝑥 ∈ 𝐵 ↦ 𝑋))‘𝑁)) |
| 54 | 44, 53 | syl6eqr 2674 |
1
⊢ (𝜑 → (seq𝑀( ∘𝑓 + , (𝑥 ∈ 𝐵 ↦ (𝑧 ∈ 𝐴 ↦ 𝑋)))‘𝑁) = (𝑧 ∈ 𝐴 ↦ (seq𝑀( + , (𝑥 ∈ 𝐵 ↦ 𝑋))‘𝑁))) |