MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqof Structured version   Visualization version   GIF version

Theorem seqof 12858
Description: Distribute function operation through a sequence. Note that 𝐺(𝑧) is an implicit function on 𝑧. (Contributed by Mario Carneiro, 3-Mar-2015.)
Hypotheses
Ref Expression
seqof.1 (𝜑𝐴𝑉)
seqof.2 (𝜑𝑁 ∈ (ℤ𝑀))
seqof.3 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) = (𝑧𝐴 ↦ (𝐺𝑥)))
Assertion
Ref Expression
seqof (𝜑 → (seq𝑀( ∘𝑓 + , 𝐹)‘𝑁) = (𝑧𝐴 ↦ (seq𝑀( + , 𝐺)‘𝑁)))
Distinct variable groups:   𝑥,𝑧,𝐴   𝑥,𝐹,𝑧   𝑥,𝐺   𝑥,𝑀,𝑧   𝑥,𝑁,𝑧   𝑥, + ,𝑧   𝜑,𝑥,𝑧
Allowed substitution hints:   𝐺(𝑧)   𝑉(𝑥,𝑧)

Proof of Theorem seqof
Dummy variables 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqof.2 . . . . 5 (𝜑𝑁 ∈ (ℤ𝑀))
2 fvex 6201 . . . . . . . . 9 (𝐺𝑥) ∈ V
32rgenw 2924 . . . . . . . 8 𝑧𝐴 (𝐺𝑥) ∈ V
4 eqid 2622 . . . . . . . . 9 (𝑧𝐴 ↦ (𝐺𝑥)) = (𝑧𝐴 ↦ (𝐺𝑥))
54fnmpt 6020 . . . . . . . 8 (∀𝑧𝐴 (𝐺𝑥) ∈ V → (𝑧𝐴 ↦ (𝐺𝑥)) Fn 𝐴)
63, 5mp1i 13 . . . . . . 7 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝑧𝐴 ↦ (𝐺𝑥)) Fn 𝐴)
7 seqof.3 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) = (𝑧𝐴 ↦ (𝐺𝑥)))
87fneq1d 5981 . . . . . . 7 ((𝜑𝑥 ∈ (𝑀...𝑁)) → ((𝐹𝑥) Fn 𝐴 ↔ (𝑧𝐴 ↦ (𝐺𝑥)) Fn 𝐴))
96, 8mpbird 247 . . . . . 6 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) Fn 𝐴)
10 fvex 6201 . . . . . . 7 (𝐹𝑥) ∈ V
11 fneq1 5979 . . . . . . 7 (𝑧 = (𝐹𝑥) → (𝑧 Fn 𝐴 ↔ (𝐹𝑥) Fn 𝐴))
1210, 11elab 3350 . . . . . 6 ((𝐹𝑥) ∈ {𝑧𝑧 Fn 𝐴} ↔ (𝐹𝑥) Fn 𝐴)
139, 12sylibr 224 . . . . 5 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ {𝑧𝑧 Fn 𝐴})
14 simprl 794 . . . . . . . . 9 ((𝜑 ∧ (𝑥 Fn 𝐴𝑦 Fn 𝐴)) → 𝑥 Fn 𝐴)
15 simprr 796 . . . . . . . . 9 ((𝜑 ∧ (𝑥 Fn 𝐴𝑦 Fn 𝐴)) → 𝑦 Fn 𝐴)
16 seqof.1 . . . . . . . . . 10 (𝜑𝐴𝑉)
1716adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑥 Fn 𝐴𝑦 Fn 𝐴)) → 𝐴𝑉)
18 inidm 3822 . . . . . . . . 9 (𝐴𝐴) = 𝐴
1914, 15, 17, 17, 18offn 6908 . . . . . . . 8 ((𝜑 ∧ (𝑥 Fn 𝐴𝑦 Fn 𝐴)) → (𝑥𝑓 + 𝑦) Fn 𝐴)
2019ex 450 . . . . . . 7 (𝜑 → ((𝑥 Fn 𝐴𝑦 Fn 𝐴) → (𝑥𝑓 + 𝑦) Fn 𝐴))
21 vex 3203 . . . . . . . . 9 𝑥 ∈ V
22 fneq1 5979 . . . . . . . . 9 (𝑧 = 𝑥 → (𝑧 Fn 𝐴𝑥 Fn 𝐴))
2321, 22elab 3350 . . . . . . . 8 (𝑥 ∈ {𝑧𝑧 Fn 𝐴} ↔ 𝑥 Fn 𝐴)
24 vex 3203 . . . . . . . . 9 𝑦 ∈ V
25 fneq1 5979 . . . . . . . . 9 (𝑧 = 𝑦 → (𝑧 Fn 𝐴𝑦 Fn 𝐴))
2624, 25elab 3350 . . . . . . . 8 (𝑦 ∈ {𝑧𝑧 Fn 𝐴} ↔ 𝑦 Fn 𝐴)
2723, 26anbi12i 733 . . . . . . 7 ((𝑥 ∈ {𝑧𝑧 Fn 𝐴} ∧ 𝑦 ∈ {𝑧𝑧 Fn 𝐴}) ↔ (𝑥 Fn 𝐴𝑦 Fn 𝐴))
28 ovex 6678 . . . . . . . 8 (𝑥𝑓 + 𝑦) ∈ V
29 fneq1 5979 . . . . . . . 8 (𝑧 = (𝑥𝑓 + 𝑦) → (𝑧 Fn 𝐴 ↔ (𝑥𝑓 + 𝑦) Fn 𝐴))
3028, 29elab 3350 . . . . . . 7 ((𝑥𝑓 + 𝑦) ∈ {𝑧𝑧 Fn 𝐴} ↔ (𝑥𝑓 + 𝑦) Fn 𝐴)
3120, 27, 303imtr4g 285 . . . . . 6 (𝜑 → ((𝑥 ∈ {𝑧𝑧 Fn 𝐴} ∧ 𝑦 ∈ {𝑧𝑧 Fn 𝐴}) → (𝑥𝑓 + 𝑦) ∈ {𝑧𝑧 Fn 𝐴}))
3231imp 445 . . . . 5 ((𝜑 ∧ (𝑥 ∈ {𝑧𝑧 Fn 𝐴} ∧ 𝑦 ∈ {𝑧𝑧 Fn 𝐴})) → (𝑥𝑓 + 𝑦) ∈ {𝑧𝑧 Fn 𝐴})
331, 13, 32seqcl 12821 . . . 4 (𝜑 → (seq𝑀( ∘𝑓 + , 𝐹)‘𝑁) ∈ {𝑧𝑧 Fn 𝐴})
34 fvex 6201 . . . . 5 (seq𝑀( ∘𝑓 + , 𝐹)‘𝑁) ∈ V
35 fneq1 5979 . . . . 5 (𝑧 = (seq𝑀( ∘𝑓 + , 𝐹)‘𝑁) → (𝑧 Fn 𝐴 ↔ (seq𝑀( ∘𝑓 + , 𝐹)‘𝑁) Fn 𝐴))
3634, 35elab 3350 . . . 4 ((seq𝑀( ∘𝑓 + , 𝐹)‘𝑁) ∈ {𝑧𝑧 Fn 𝐴} ↔ (seq𝑀( ∘𝑓 + , 𝐹)‘𝑁) Fn 𝐴)
3733, 36sylib 208 . . 3 (𝜑 → (seq𝑀( ∘𝑓 + , 𝐹)‘𝑁) Fn 𝐴)
38 dffn5 6241 . . 3 ((seq𝑀( ∘𝑓 + , 𝐹)‘𝑁) Fn 𝐴 ↔ (seq𝑀( ∘𝑓 + , 𝐹)‘𝑁) = (𝑧𝐴 ↦ ((seq𝑀( ∘𝑓 + , 𝐹)‘𝑁)‘𝑧)))
3937, 38sylib 208 . 2 (𝜑 → (seq𝑀( ∘𝑓 + , 𝐹)‘𝑁) = (𝑧𝐴 ↦ ((seq𝑀( ∘𝑓 + , 𝐹)‘𝑁)‘𝑧)))
40 fveq1 6190 . . . . . 6 (𝑤 = (seq𝑀( ∘𝑓 + , 𝐹)‘𝑁) → (𝑤𝑧) = ((seq𝑀( ∘𝑓 + , 𝐹)‘𝑁)‘𝑧))
41 eqid 2622 . . . . . 6 (𝑤 ∈ V ↦ (𝑤𝑧)) = (𝑤 ∈ V ↦ (𝑤𝑧))
42 fvex 6201 . . . . . 6 ((seq𝑀( ∘𝑓 + , 𝐹)‘𝑁)‘𝑧) ∈ V
4340, 41, 42fvmpt 6282 . . . . 5 ((seq𝑀( ∘𝑓 + , 𝐹)‘𝑁) ∈ V → ((𝑤 ∈ V ↦ (𝑤𝑧))‘(seq𝑀( ∘𝑓 + , 𝐹)‘𝑁)) = ((seq𝑀( ∘𝑓 + , 𝐹)‘𝑁)‘𝑧))
4434, 43mp1i 13 . . . 4 ((𝜑𝑧𝐴) → ((𝑤 ∈ V ↦ (𝑤𝑧))‘(seq𝑀( ∘𝑓 + , 𝐹)‘𝑁)) = ((seq𝑀( ∘𝑓 + , 𝐹)‘𝑁)‘𝑧))
4532adantlr 751 . . . . 5 (((𝜑𝑧𝐴) ∧ (𝑥 ∈ {𝑧𝑧 Fn 𝐴} ∧ 𝑦 ∈ {𝑧𝑧 Fn 𝐴})) → (𝑥𝑓 + 𝑦) ∈ {𝑧𝑧 Fn 𝐴})
4613adantlr 751 . . . . 5 (((𝜑𝑧𝐴) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ {𝑧𝑧 Fn 𝐴})
471adantr 481 . . . . 5 ((𝜑𝑧𝐴) → 𝑁 ∈ (ℤ𝑀))
48 eqidd 2623 . . . . . . . . 9 (((𝜑 ∧ (𝑥 Fn 𝐴𝑦 Fn 𝐴)) ∧ 𝑧𝐴) → (𝑥𝑧) = (𝑥𝑧))
49 eqidd 2623 . . . . . . . . 9 (((𝜑 ∧ (𝑥 Fn 𝐴𝑦 Fn 𝐴)) ∧ 𝑧𝐴) → (𝑦𝑧) = (𝑦𝑧))
5014, 15, 17, 17, 18, 48, 49ofval 6906 . . . . . . . 8 (((𝜑 ∧ (𝑥 Fn 𝐴𝑦 Fn 𝐴)) ∧ 𝑧𝐴) → ((𝑥𝑓 + 𝑦)‘𝑧) = ((𝑥𝑧) + (𝑦𝑧)))
5150an32s 846 . . . . . . 7 (((𝜑𝑧𝐴) ∧ (𝑥 Fn 𝐴𝑦 Fn 𝐴)) → ((𝑥𝑓 + 𝑦)‘𝑧) = ((𝑥𝑧) + (𝑦𝑧)))
52 fveq1 6190 . . . . . . . . 9 (𝑤 = (𝑥𝑓 + 𝑦) → (𝑤𝑧) = ((𝑥𝑓 + 𝑦)‘𝑧))
53 fvex 6201 . . . . . . . . 9 ((𝑥𝑓 + 𝑦)‘𝑧) ∈ V
5452, 41, 53fvmpt 6282 . . . . . . . 8 ((𝑥𝑓 + 𝑦) ∈ V → ((𝑤 ∈ V ↦ (𝑤𝑧))‘(𝑥𝑓 + 𝑦)) = ((𝑥𝑓 + 𝑦)‘𝑧))
5528, 54ax-mp 5 . . . . . . 7 ((𝑤 ∈ V ↦ (𝑤𝑧))‘(𝑥𝑓 + 𝑦)) = ((𝑥𝑓 + 𝑦)‘𝑧)
56 fveq1 6190 . . . . . . . . . 10 (𝑤 = 𝑥 → (𝑤𝑧) = (𝑥𝑧))
57 fvex 6201 . . . . . . . . . 10 (𝑥𝑧) ∈ V
5856, 41, 57fvmpt 6282 . . . . . . . . 9 (𝑥 ∈ V → ((𝑤 ∈ V ↦ (𝑤𝑧))‘𝑥) = (𝑥𝑧))
5921, 58ax-mp 5 . . . . . . . 8 ((𝑤 ∈ V ↦ (𝑤𝑧))‘𝑥) = (𝑥𝑧)
60 fveq1 6190 . . . . . . . . . 10 (𝑤 = 𝑦 → (𝑤𝑧) = (𝑦𝑧))
61 fvex 6201 . . . . . . . . . 10 (𝑦𝑧) ∈ V
6260, 41, 61fvmpt 6282 . . . . . . . . 9 (𝑦 ∈ V → ((𝑤 ∈ V ↦ (𝑤𝑧))‘𝑦) = (𝑦𝑧))
6324, 62ax-mp 5 . . . . . . . 8 ((𝑤 ∈ V ↦ (𝑤𝑧))‘𝑦) = (𝑦𝑧)
6459, 63oveq12i 6662 . . . . . . 7 (((𝑤 ∈ V ↦ (𝑤𝑧))‘𝑥) + ((𝑤 ∈ V ↦ (𝑤𝑧))‘𝑦)) = ((𝑥𝑧) + (𝑦𝑧))
6551, 55, 643eqtr4g 2681 . . . . . 6 (((𝜑𝑧𝐴) ∧ (𝑥 Fn 𝐴𝑦 Fn 𝐴)) → ((𝑤 ∈ V ↦ (𝑤𝑧))‘(𝑥𝑓 + 𝑦)) = (((𝑤 ∈ V ↦ (𝑤𝑧))‘𝑥) + ((𝑤 ∈ V ↦ (𝑤𝑧))‘𝑦)))
6627, 65sylan2b 492 . . . . 5 (((𝜑𝑧𝐴) ∧ (𝑥 ∈ {𝑧𝑧 Fn 𝐴} ∧ 𝑦 ∈ {𝑧𝑧 Fn 𝐴})) → ((𝑤 ∈ V ↦ (𝑤𝑧))‘(𝑥𝑓 + 𝑦)) = (((𝑤 ∈ V ↦ (𝑤𝑧))‘𝑥) + ((𝑤 ∈ V ↦ (𝑤𝑧))‘𝑦)))
67 fveq1 6190 . . . . . . . 8 (𝑤 = (𝐹𝑥) → (𝑤𝑧) = ((𝐹𝑥)‘𝑧))
68 fvex 6201 . . . . . . . 8 ((𝐹𝑥)‘𝑧) ∈ V
6967, 41, 68fvmpt 6282 . . . . . . 7 ((𝐹𝑥) ∈ V → ((𝑤 ∈ V ↦ (𝑤𝑧))‘(𝐹𝑥)) = ((𝐹𝑥)‘𝑧))
7010, 69ax-mp 5 . . . . . 6 ((𝑤 ∈ V ↦ (𝑤𝑧))‘(𝐹𝑥)) = ((𝐹𝑥)‘𝑧)
717adantlr 751 . . . . . . . 8 (((𝜑𝑧𝐴) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) = (𝑧𝐴 ↦ (𝐺𝑥)))
7271fveq1d 6193 . . . . . . 7 (((𝜑𝑧𝐴) ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝐹𝑥)‘𝑧) = ((𝑧𝐴 ↦ (𝐺𝑥))‘𝑧))
73 simplr 792 . . . . . . . 8 (((𝜑𝑧𝐴) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑧𝐴)
744fvmpt2 6291 . . . . . . . 8 ((𝑧𝐴 ∧ (𝐺𝑥) ∈ V) → ((𝑧𝐴 ↦ (𝐺𝑥))‘𝑧) = (𝐺𝑥))
7573, 2, 74sylancl 694 . . . . . . 7 (((𝜑𝑧𝐴) ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝑧𝐴 ↦ (𝐺𝑥))‘𝑧) = (𝐺𝑥))
7672, 75eqtrd 2656 . . . . . 6 (((𝜑𝑧𝐴) ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝐹𝑥)‘𝑧) = (𝐺𝑥))
7770, 76syl5eq 2668 . . . . 5 (((𝜑𝑧𝐴) ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝑤 ∈ V ↦ (𝑤𝑧))‘(𝐹𝑥)) = (𝐺𝑥))
7845, 46, 47, 66, 77seqhomo 12848 . . . 4 ((𝜑𝑧𝐴) → ((𝑤 ∈ V ↦ (𝑤𝑧))‘(seq𝑀( ∘𝑓 + , 𝐹)‘𝑁)) = (seq𝑀( + , 𝐺)‘𝑁))
7944, 78eqtr3d 2658 . . 3 ((𝜑𝑧𝐴) → ((seq𝑀( ∘𝑓 + , 𝐹)‘𝑁)‘𝑧) = (seq𝑀( + , 𝐺)‘𝑁))
8079mpteq2dva 4744 . 2 (𝜑 → (𝑧𝐴 ↦ ((seq𝑀( ∘𝑓 + , 𝐹)‘𝑁)‘𝑧)) = (𝑧𝐴 ↦ (seq𝑀( + , 𝐺)‘𝑁)))
8139, 80eqtrd 2656 1 (𝜑 → (seq𝑀( ∘𝑓 + , 𝐹)‘𝑁) = (𝑧𝐴 ↦ (seq𝑀( + , 𝐺)‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  {cab 2608  wral 2912  Vcvv 3200  cmpt 4729   Fn wfn 5883  cfv 5888  (class class class)co 6650  𝑓 cof 6895  cuz 11687  ...cfz 12326  seqcseq 12801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802
This theorem is referenced by:  seqof2  12859  mtest  24158  pserulm  24176  knoppcnlem7  32489
  Copyright terms: Public domain W3C validator