Step | Hyp | Ref
| Expression |
1 | | lgamucov.u |
. . 3
⊢ 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘)))} |
2 | | lgamucov.a |
. . 3
⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖
ℕ))) |
3 | 1, 2 | lgamucov2 24765 |
. 2
⊢ (𝜑 → ∃𝑟 ∈ ℕ 𝐴 ∈ 𝑈) |
4 | | fveq2 6191 |
. . . . 5
⊢ (𝑧 = 𝐴 → (log Γ‘𝑧) = (log Γ‘𝐴)) |
5 | 4 | eleq1d 2686 |
. . . 4
⊢ (𝑧 = 𝐴 → ((log Γ‘𝑧) ∈ ℂ ↔ (log
Γ‘𝐴) ∈
ℂ)) |
6 | | simprl 794 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴 ∈ 𝑈)) → 𝑟 ∈ ℕ) |
7 | | fveq2 6191 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑡 → (abs‘𝑥) = (abs‘𝑡)) |
8 | 7 | breq1d 4663 |
. . . . . . . . 9
⊢ (𝑥 = 𝑡 → ((abs‘𝑥) ≤ 𝑟 ↔ (abs‘𝑡) ≤ 𝑟)) |
9 | | oveq1 6657 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑡 → (𝑥 + 𝑘) = (𝑡 + 𝑘)) |
10 | 9 | fveq2d 6195 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑡 → (abs‘(𝑥 + 𝑘)) = (abs‘(𝑡 + 𝑘))) |
11 | 10 | breq2d 4665 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑡 → ((1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘)) ↔ (1 / 𝑟) ≤ (abs‘(𝑡 + 𝑘)))) |
12 | 11 | ralbidv 2986 |
. . . . . . . . 9
⊢ (𝑥 = 𝑡 → (∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘)) ↔ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑡 + 𝑘)))) |
13 | 8, 12 | anbi12d 747 |
. . . . . . . 8
⊢ (𝑥 = 𝑡 → (((abs‘𝑥) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘))) ↔ ((abs‘𝑡) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑡 + 𝑘))))) |
14 | 13 | cbvrabv 3199 |
. . . . . . 7
⊢ {𝑥 ∈ ℂ ∣
((abs‘𝑥) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 /
𝑟) ≤ (abs‘(𝑥 + 𝑘)))} = {𝑡 ∈ ℂ ∣ ((abs‘𝑡) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑡 + 𝑘)))} |
15 | 1, 14 | eqtri 2644 |
. . . . . 6
⊢ 𝑈 = {𝑡 ∈ ℂ ∣ ((abs‘𝑡) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑡 + 𝑘)))} |
16 | | eqid 2622 |
. . . . . 6
⊢ (𝑚 ∈ ℕ ↦ (𝑧 ∈ 𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))) = (𝑚 ∈ ℕ ↦ (𝑧 ∈ 𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))) |
17 | 6, 15, 16 | lgamgulm2 24762 |
. . . . 5
⊢ ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴 ∈ 𝑈)) → (∀𝑧 ∈ 𝑈 (log Γ‘𝑧) ∈ ℂ ∧ seq1(
∘𝑓 + , (𝑚 ∈ ℕ ↦ (𝑧 ∈ 𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) +
1))))))(⇝𝑢‘𝑈)(𝑧 ∈ 𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧))))) |
18 | 17 | simpld 475 |
. . . 4
⊢ ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴 ∈ 𝑈)) → ∀𝑧 ∈ 𝑈 (log Γ‘𝑧) ∈ ℂ) |
19 | | simprr 796 |
. . . 4
⊢ ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴 ∈ 𝑈)) → 𝐴 ∈ 𝑈) |
20 | 5, 18, 19 | rspcdva 3316 |
. . 3
⊢ ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴 ∈ 𝑈)) → (log Γ‘𝐴) ∈
ℂ) |
21 | | nnuz 11723 |
. . . . 5
⊢ ℕ =
(ℤ≥‘1) |
22 | | 1zzd 11408 |
. . . . 5
⊢ ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴 ∈ 𝑈)) → 1 ∈ ℤ) |
23 | | 1z 11407 |
. . . . . . . 8
⊢ 1 ∈
ℤ |
24 | | seqfn 12813 |
. . . . . . . 8
⊢ (1 ∈
ℤ → seq1( ∘𝑓 + , (𝑚 ∈ ℕ ↦ (𝑧 ∈ 𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))) Fn
(ℤ≥‘1)) |
25 | 23, 24 | ax-mp 5 |
. . . . . . 7
⊢ seq1(
∘𝑓 + , (𝑚 ∈ ℕ ↦ (𝑧 ∈ 𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))) Fn
(ℤ≥‘1) |
26 | 21 | fneq2i 5986 |
. . . . . . 7
⊢ (seq1(
∘𝑓 + , (𝑚 ∈ ℕ ↦ (𝑧 ∈ 𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))) Fn ℕ ↔ seq1(
∘𝑓 + , (𝑚 ∈ ℕ ↦ (𝑧 ∈ 𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))) Fn
(ℤ≥‘1)) |
27 | 25, 26 | mpbir 221 |
. . . . . 6
⊢ seq1(
∘𝑓 + , (𝑚 ∈ ℕ ↦ (𝑧 ∈ 𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))) Fn ℕ |
28 | 17 | simprd 479 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴 ∈ 𝑈)) → seq1( ∘𝑓
+ , (𝑚 ∈ ℕ
↦ (𝑧 ∈ 𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) +
1))))))(⇝𝑢‘𝑈)(𝑧 ∈ 𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧)))) |
29 | | ulmf2 24138 |
. . . . . 6
⊢ ((seq1(
∘𝑓 + , (𝑚 ∈ ℕ ↦ (𝑧 ∈ 𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))) Fn ℕ ∧ seq1(
∘𝑓 + , (𝑚 ∈ ℕ ↦ (𝑧 ∈ 𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) +
1))))))(⇝𝑢‘𝑈)(𝑧 ∈ 𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧)))) → seq1(
∘𝑓 + , (𝑚 ∈ ℕ ↦ (𝑧 ∈ 𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))):ℕ⟶(ℂ
↑𝑚 𝑈)) |
30 | 27, 28, 29 | sylancr 695 |
. . . . 5
⊢ ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴 ∈ 𝑈)) → seq1( ∘𝑓
+ , (𝑚 ∈ ℕ
↦ (𝑧 ∈ 𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))):ℕ⟶(ℂ
↑𝑚 𝑈)) |
31 | | seqex 12803 |
. . . . . 6
⊢ seq1( + ,
𝐺) ∈
V |
32 | 31 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴 ∈ 𝑈)) → seq1( + , 𝐺) ∈ V) |
33 | | cnex 10017 |
. . . . . . . . 9
⊢ ℂ
∈ V |
34 | 1, 33 | rabex2 4815 |
. . . . . . . 8
⊢ 𝑈 ∈ V |
35 | 34 | a1i 11 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴 ∈ 𝑈)) ∧ 𝑛 ∈ ℕ) → 𝑈 ∈ V) |
36 | | simpr 477 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴 ∈ 𝑈)) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ) |
37 | 36, 21 | syl6eleq 2711 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴 ∈ 𝑈)) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈
(ℤ≥‘1)) |
38 | | fz1ssnn 12372 |
. . . . . . . 8
⊢
(1...𝑛) ⊆
ℕ |
39 | 38 | a1i 11 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴 ∈ 𝑈)) ∧ 𝑛 ∈ ℕ) → (1...𝑛) ⊆
ℕ) |
40 | | ovexd 6680 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴 ∈ 𝑈)) ∧ 𝑛 ∈ ℕ) ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ 𝑈)) → ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) ∈ V) |
41 | 35, 37, 39, 40 | seqof2 12859 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴 ∈ 𝑈)) ∧ 𝑛 ∈ ℕ) → (seq1(
∘𝑓 + , (𝑚 ∈ ℕ ↦ (𝑧 ∈ 𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))))‘𝑛) = (𝑧 ∈ 𝑈 ↦ (seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))‘𝑛))) |
42 | | simplr 792 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴 ∈ 𝑈)) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 = 𝐴) ∧ 𝑚 ∈ ℕ) → 𝑧 = 𝐴) |
43 | 42 | oveq1d 6665 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴 ∈ 𝑈)) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 = 𝐴) ∧ 𝑚 ∈ ℕ) → (𝑧 · (log‘((𝑚 + 1) / 𝑚))) = (𝐴 · (log‘((𝑚 + 1) / 𝑚)))) |
44 | 42 | oveq1d 6665 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴 ∈ 𝑈)) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 = 𝐴) ∧ 𝑚 ∈ ℕ) → (𝑧 / 𝑚) = (𝐴 / 𝑚)) |
45 | 44 | oveq1d 6665 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴 ∈ 𝑈)) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 = 𝐴) ∧ 𝑚 ∈ ℕ) → ((𝑧 / 𝑚) + 1) = ((𝐴 / 𝑚) + 1)) |
46 | 45 | fveq2d 6195 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴 ∈ 𝑈)) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 = 𝐴) ∧ 𝑚 ∈ ℕ) → (log‘((𝑧 / 𝑚) + 1)) = (log‘((𝐴 / 𝑚) + 1))) |
47 | 43, 46 | oveq12d 6668 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴 ∈ 𝑈)) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 = 𝐴) ∧ 𝑚 ∈ ℕ) → ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) = ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1)))) |
48 | 47 | mpteq2dva 4744 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴 ∈ 𝑈)) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 = 𝐴) → (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))) = (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1))))) |
49 | | lgamcvglem.g |
. . . . . . . . 9
⊢ 𝐺 = (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1)))) |
50 | 48, 49 | syl6eqr 2674 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴 ∈ 𝑈)) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 = 𝐴) → (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))) = 𝐺) |
51 | 50 | seqeq3d 12809 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴 ∈ 𝑈)) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 = 𝐴) → seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))) = seq1( + , 𝐺)) |
52 | 51 | fveq1d 6193 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴 ∈ 𝑈)) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 = 𝐴) → (seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))‘𝑛) = (seq1( + , 𝐺)‘𝑛)) |
53 | | simplrr 801 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴 ∈ 𝑈)) ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ 𝑈) |
54 | | fvexd 6203 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴 ∈ 𝑈)) ∧ 𝑛 ∈ ℕ) → (seq1( + , 𝐺)‘𝑛) ∈ V) |
55 | 41, 52, 53, 54 | fvmptd 6288 |
. . . . 5
⊢ (((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴 ∈ 𝑈)) ∧ 𝑛 ∈ ℕ) → ((seq1(
∘𝑓 + , (𝑚 ∈ ℕ ↦ (𝑧 ∈ 𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))))‘𝑛)‘𝐴) = (seq1( + , 𝐺)‘𝑛)) |
56 | 21, 22, 30, 19, 32, 55, 28 | ulmclm 24141 |
. . . 4
⊢ ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴 ∈ 𝑈)) → seq1( + , 𝐺) ⇝ ((𝑧 ∈ 𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧)))‘𝐴)) |
57 | | fveq2 6191 |
. . . . . . 7
⊢ (𝑧 = 𝐴 → (log‘𝑧) = (log‘𝐴)) |
58 | 4, 57 | oveq12d 6668 |
. . . . . 6
⊢ (𝑧 = 𝐴 → ((log Γ‘𝑧) + (log‘𝑧)) = ((log Γ‘𝐴) + (log‘𝐴))) |
59 | | eqid 2622 |
. . . . . 6
⊢ (𝑧 ∈ 𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧))) = (𝑧 ∈ 𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧))) |
60 | | ovex 6678 |
. . . . . 6
⊢ ((log
Γ‘𝐴) +
(log‘𝐴)) ∈
V |
61 | 58, 59, 60 | fvmpt 6282 |
. . . . 5
⊢ (𝐴 ∈ 𝑈 → ((𝑧 ∈ 𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧)))‘𝐴) = ((log Γ‘𝐴) + (log‘𝐴))) |
62 | 19, 61 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴 ∈ 𝑈)) → ((𝑧 ∈ 𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧)))‘𝐴) = ((log Γ‘𝐴) + (log‘𝐴))) |
63 | 56, 62 | breqtrd 4679 |
. . 3
⊢ ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴 ∈ 𝑈)) → seq1( + , 𝐺) ⇝ ((log Γ‘𝐴) + (log‘𝐴))) |
64 | 20, 63 | jca 554 |
. 2
⊢ ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴 ∈ 𝑈)) → ((log Γ‘𝐴) ∈ ℂ ∧ seq1( + ,
𝐺) ⇝ ((log
Γ‘𝐴) +
(log‘𝐴)))) |
65 | 3, 64 | rexlimddv 3035 |
1
⊢ (𝜑 → ((log Γ‘𝐴) ∈ ℂ ∧ seq1( + ,
𝐺) ⇝ ((log
Γ‘𝐴) +
(log‘𝐴)))) |