Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0gerpmpt Structured version   Visualization version   GIF version

Theorem sge0gerpmpt 40619
Description: The arbitrary sum of nonnegative extended reals is larger or equal to a given extended real number if this number can be approximated from below by finite subsums. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0gerpmpt.xph 𝑥𝜑
sge0gerpmpt.a (𝜑𝐴𝑉)
sge0gerpmpt.b ((𝜑𝑥𝐴) → 𝐵 ∈ (0[,]+∞))
sge0gerpmpt.c (𝜑𝐶 ∈ ℝ*)
sge0gerpmpt.rp ((𝜑𝑦 ∈ ℝ+) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)𝐶 ≤ ((Σ^‘(𝑥𝑧𝐵)) +𝑒 𝑦))
Assertion
Ref Expression
sge0gerpmpt (𝜑𝐶 ≤ (Σ^‘(𝑥𝐴𝐵)))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑦,𝐵,𝑧   𝑦,𝐶,𝑧   𝜑,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem sge0gerpmpt
StepHypRef Expression
1 sge0gerpmpt.a . 2 (𝜑𝐴𝑉)
2 sge0gerpmpt.xph . . 3 𝑥𝜑
3 sge0gerpmpt.b . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ (0[,]+∞))
4 eqid 2622 . . 3 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
52, 3, 4fmptdf 6387 . 2 (𝜑 → (𝑥𝐴𝐵):𝐴⟶(0[,]+∞))
6 sge0gerpmpt.c . 2 (𝜑𝐶 ∈ ℝ*)
7 sge0gerpmpt.rp . . 3 ((𝜑𝑦 ∈ ℝ+) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)𝐶 ≤ ((Σ^‘(𝑥𝑧𝐵)) +𝑒 𝑦))
8 elpwinss 39216 . . . . . . . . . . 11 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → 𝑧𝐴)
98resmptd 5452 . . . . . . . . . 10 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → ((𝑥𝐴𝐵) ↾ 𝑧) = (𝑥𝑧𝐵))
109eqcomd 2628 . . . . . . . . 9 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → (𝑥𝑧𝐵) = ((𝑥𝐴𝐵) ↾ 𝑧))
1110fveq2d 6195 . . . . . . . 8 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → (Σ^‘(𝑥𝑧𝐵)) = (Σ^‘((𝑥𝐴𝐵) ↾ 𝑧)))
1211oveq1d 6665 . . . . . . 7 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → ((Σ^‘(𝑥𝑧𝐵)) +𝑒 𝑦) = ((Σ^‘((𝑥𝐴𝐵) ↾ 𝑧)) +𝑒 𝑦))
1312breq2d 4665 . . . . . 6 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → (𝐶 ≤ ((Σ^‘(𝑥𝑧𝐵)) +𝑒 𝑦) ↔ 𝐶 ≤ ((Σ^‘((𝑥𝐴𝐵) ↾ 𝑧)) +𝑒 𝑦)))
1413biimpd 219 . . . . 5 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → (𝐶 ≤ ((Σ^‘(𝑥𝑧𝐵)) +𝑒 𝑦) → 𝐶 ≤ ((Σ^‘((𝑥𝐴𝐵) ↾ 𝑧)) +𝑒 𝑦)))
1514adantl 482 . . . 4 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐶 ≤ ((Σ^‘(𝑥𝑧𝐵)) +𝑒 𝑦) → 𝐶 ≤ ((Σ^‘((𝑥𝐴𝐵) ↾ 𝑧)) +𝑒 𝑦)))
1615reximdva 3017 . . 3 ((𝜑𝑦 ∈ ℝ+) → (∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)𝐶 ≤ ((Σ^‘(𝑥𝑧𝐵)) +𝑒 𝑦) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)𝐶 ≤ ((Σ^‘((𝑥𝐴𝐵) ↾ 𝑧)) +𝑒 𝑦)))
177, 16mpd 15 . 2 ((𝜑𝑦 ∈ ℝ+) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)𝐶 ≤ ((Σ^‘((𝑥𝐴𝐵) ↾ 𝑧)) +𝑒 𝑦))
181, 5, 6, 17sge0gerp 40612 1 (𝜑𝐶 ≤ (Σ^‘(𝑥𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wnf 1708  wcel 1990  wrex 2913  cin 3573  𝒫 cpw 4158   class class class wbr 4653  cmpt 4729  cres 5116  cfv 5888  (class class class)co 6650  Fincfn 7955  0cc0 9936  +∞cpnf 10071  *cxr 10073  cle 10075  +crp 11832   +𝑒 cxad 11944  [,]cicc 12178  Σ^csumge0 40579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-xadd 11947  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-sumge0 40580
This theorem is referenced by:  sge0iunmptlemre  40632
  Copyright terms: Public domain W3C validator