![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0isummpt2 | Structured version Visualization version GIF version |
Description: If a series of nonnegative reals is convergent, then it agrees with the generalized sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
sge0isummpt2.kph | ⊢ Ⅎ𝑘𝜑 |
sge0isummpt2.a | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ (0[,)+∞)) |
sge0isummpt2.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
sge0isummpt2.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
sge0isummpt2.b | ⊢ (𝜑 → seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐴)) ⇝ 𝐵) |
Ref | Expression |
---|---|
sge0isummpt2 | ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝑍 ↦ 𝐴)) = Σ𝑘 ∈ 𝑍 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sge0isummpt2.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | sge0isummpt2.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | simpr 477 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ 𝑍) | |
4 | sge0isummpt2.kph | . . . . . . 7 ⊢ Ⅎ𝑘𝜑 | |
5 | nfv 1843 | . . . . . . 7 ⊢ Ⅎ𝑘 𝑗 ∈ 𝑍 | |
6 | 4, 5 | nfan 1828 | . . . . . 6 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝑍) |
7 | nfcv 2764 | . . . . . . . 8 ⊢ Ⅎ𝑘𝑗 | |
8 | 7 | nfcsb1 3548 | . . . . . . 7 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐴 |
9 | 8 | nfel1 2779 | . . . . . 6 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐴 ∈ (0[,)+∞) |
10 | 6, 9 | nfim 1825 | . . . . 5 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐴 ∈ (0[,)+∞)) |
11 | eleq1 2689 | . . . . . . 7 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝑍 ↔ 𝑗 ∈ 𝑍)) | |
12 | 11 | anbi2d 740 | . . . . . 6 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝑍) ↔ (𝜑 ∧ 𝑗 ∈ 𝑍))) |
13 | csbeq1a 3542 | . . . . . . 7 ⊢ (𝑘 = 𝑗 → 𝐴 = ⦋𝑗 / 𝑘⦌𝐴) | |
14 | 13 | eleq1d 2686 | . . . . . 6 ⊢ (𝑘 = 𝑗 → (𝐴 ∈ (0[,)+∞) ↔ ⦋𝑗 / 𝑘⦌𝐴 ∈ (0[,)+∞))) |
15 | 12, 14 | imbi12d 334 | . . . . 5 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ (0[,)+∞)) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐴 ∈ (0[,)+∞)))) |
16 | sge0isummpt2.a | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ (0[,)+∞)) | |
17 | 10, 15, 16 | chvar 2262 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐴 ∈ (0[,)+∞)) |
18 | nfcv 2764 | . . . . . . 7 ⊢ Ⅎ𝑖𝐴 | |
19 | nfcsb1v 3549 | . . . . . . 7 ⊢ Ⅎ𝑘⦋𝑖 / 𝑘⦌𝐴 | |
20 | csbeq1a 3542 | . . . . . . 7 ⊢ (𝑘 = 𝑖 → 𝐴 = ⦋𝑖 / 𝑘⦌𝐴) | |
21 | 18, 19, 20 | cbvmpt 4749 | . . . . . 6 ⊢ (𝑘 ∈ 𝑍 ↦ 𝐴) = (𝑖 ∈ 𝑍 ↦ ⦋𝑖 / 𝑘⦌𝐴) |
22 | 21 | eqcomi 2631 | . . . . 5 ⊢ (𝑖 ∈ 𝑍 ↦ ⦋𝑖 / 𝑘⦌𝐴) = (𝑘 ∈ 𝑍 ↦ 𝐴) |
23 | 7, 8, 13, 22 | fvmptf 6301 | . . . 4 ⊢ ((𝑗 ∈ 𝑍 ∧ ⦋𝑗 / 𝑘⦌𝐴 ∈ (0[,)+∞)) → ((𝑖 ∈ 𝑍 ↦ ⦋𝑖 / 𝑘⦌𝐴)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐴) |
24 | 3, 17, 23 | syl2anc 693 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝑖 ∈ 𝑍 ↦ ⦋𝑖 / 𝑘⦌𝐴)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐴) |
25 | rge0ssre 12280 | . . . . 5 ⊢ (0[,)+∞) ⊆ ℝ | |
26 | ax-resscn 9993 | . . . . 5 ⊢ ℝ ⊆ ℂ | |
27 | 25, 26 | sstri 3612 | . . . 4 ⊢ (0[,)+∞) ⊆ ℂ |
28 | 27, 17 | sseldi 3601 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐴 ∈ ℂ) |
29 | sge0isummpt2.b | . . . 4 ⊢ (𝜑 → seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐴)) ⇝ 𝐵) | |
30 | 21 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ 𝐴) = (𝑖 ∈ 𝑍 ↦ ⦋𝑖 / 𝑘⦌𝐴)) |
31 | 30 | seqeq3d 12809 | . . . . 5 ⊢ (𝜑 → seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐴)) = seq𝑀( + , (𝑖 ∈ 𝑍 ↦ ⦋𝑖 / 𝑘⦌𝐴))) |
32 | 31 | breq1d 4663 | . . . 4 ⊢ (𝜑 → (seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐴)) ⇝ 𝐵 ↔ seq𝑀( + , (𝑖 ∈ 𝑍 ↦ ⦋𝑖 / 𝑘⦌𝐴)) ⇝ 𝐵)) |
33 | 29, 32 | mpbid 222 | . . 3 ⊢ (𝜑 → seq𝑀( + , (𝑖 ∈ 𝑍 ↦ ⦋𝑖 / 𝑘⦌𝐴)) ⇝ 𝐵) |
34 | 1, 2, 24, 28, 33 | isumclim 14488 | . 2 ⊢ (𝜑 → Σ𝑗 ∈ 𝑍 ⦋𝑗 / 𝑘⦌𝐴 = 𝐵) |
35 | nfcv 2764 | . . . 4 ⊢ Ⅎ𝑗𝑍 | |
36 | nfcv 2764 | . . . 4 ⊢ Ⅎ𝑘𝑍 | |
37 | nfcv 2764 | . . . 4 ⊢ Ⅎ𝑗𝐴 | |
38 | 13, 35, 36, 37, 8 | cbvsum 14425 | . . 3 ⊢ Σ𝑘 ∈ 𝑍 𝐴 = Σ𝑗 ∈ 𝑍 ⦋𝑗 / 𝑘⦌𝐴 |
39 | 38 | a1i 11 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 = Σ𝑗 ∈ 𝑍 ⦋𝑗 / 𝑘⦌𝐴) |
40 | 4, 16, 2, 1, 29 | sge0isummpt 40647 | . 2 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝑍 ↦ 𝐴)) = 𝐵) |
41 | 34, 39, 40 | 3eqtr4rd 2667 | 1 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝑍 ↦ 𝐴)) = Σ𝑘 ∈ 𝑍 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 Ⅎwnf 1708 ∈ wcel 1990 ⦋csb 3533 class class class wbr 4653 ↦ cmpt 4729 ‘cfv 5888 (class class class)co 6650 ℂcc 9934 ℝcr 9935 0cc0 9936 + caddc 9939 +∞cpnf 10071 ℤcz 11377 ℤ≥cuz 11687 [,)cico 12177 seqcseq 12801 ⇝ cli 14215 Σcsu 14416 Σ^csumge0 40579 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-pm 7860 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-oi 8415 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-ico 12181 df-icc 12182 df-fz 12327 df-fzo 12466 df-fl 12593 df-seq 12802 df-exp 12861 df-hash 13118 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-clim 14219 df-rlim 14220 df-sum 14417 df-sumge0 40580 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |