Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0revalmpt Structured version   Visualization version   GIF version

Theorem sge0revalmpt 40595
Description: Value of the sum of nonnegative extended reals, when all terms in the sum are reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0revalmpt.1 𝑥𝜑
sge0revalmpt.2 (𝜑𝐴𝑉)
sge0revalmpt.3 ((𝜑𝑥𝐴) → 𝐵 ∈ (0[,)+∞))
Assertion
Ref Expression
sge0revalmpt (𝜑 → (Σ^‘(𝑥𝐴𝐵)) = sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑥𝑦 𝐵), ℝ*, < ))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem sge0revalmpt
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sge0revalmpt.2 . . 3 (𝜑𝐴𝑉)
2 sge0revalmpt.1 . . . 4 𝑥𝜑
3 sge0revalmpt.3 . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ (0[,)+∞))
4 eqid 2622 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
52, 3, 4fmptdf 6387 . . 3 (𝜑 → (𝑥𝐴𝐵):𝐴⟶(0[,)+∞))
61, 5sge0reval 40589 . 2 (𝜑 → (Σ^‘(𝑥𝐴𝐵)) = sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑧𝑦 ((𝑥𝐴𝐵)‘𝑧)), ℝ*, < ))
7 fveq2 6191 . . . . . . . 8 (𝑧 = 𝑥 → ((𝑥𝐴𝐵)‘𝑧) = ((𝑥𝐴𝐵)‘𝑥))
8 nfcv 2764 . . . . . . . 8 𝑥𝑦
9 nfcv 2764 . . . . . . . 8 𝑧𝑦
10 nfmpt1 4747 . . . . . . . . 9 𝑥(𝑥𝐴𝐵)
11 nfcv 2764 . . . . . . . . 9 𝑥𝑧
1210, 11nffv 6198 . . . . . . . 8 𝑥((𝑥𝐴𝐵)‘𝑧)
13 nfcv 2764 . . . . . . . 8 𝑧((𝑥𝐴𝐵)‘𝑥)
147, 8, 9, 12, 13cbvsum 14425 . . . . . . 7 Σ𝑧𝑦 ((𝑥𝐴𝐵)‘𝑧) = Σ𝑥𝑦 ((𝑥𝐴𝐵)‘𝑥)
1514a1i 11 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑧𝑦 ((𝑥𝐴𝐵)‘𝑧) = Σ𝑥𝑦 ((𝑥𝐴𝐵)‘𝑥))
16 nfv 1843 . . . . . . . . 9 𝑥 𝑦 ∈ (𝒫 𝐴 ∩ Fin)
172, 16nfan 1828 . . . . . . . 8 𝑥(𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin))
18 elpwinss 39216 . . . . . . . . . . . . 13 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦𝐴)
1918adantr 481 . . . . . . . . . . . 12 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑥𝑦) → 𝑦𝐴)
20 simpr 477 . . . . . . . . . . . 12 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑥𝑦) → 𝑥𝑦)
2119, 20sseldd 3604 . . . . . . . . . . 11 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑥𝑦) → 𝑥𝐴)
2221adantll 750 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → 𝑥𝐴)
23 simpll 790 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → 𝜑)
2423, 22, 3syl2anc 693 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → 𝐵 ∈ (0[,)+∞))
254fvmpt2 6291 . . . . . . . . . 10 ((𝑥𝐴𝐵 ∈ (0[,)+∞)) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
2622, 24, 25syl2anc 693 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
2726ex 450 . . . . . . . 8 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑥𝑦 → ((𝑥𝐴𝐵)‘𝑥) = 𝐵))
2817, 27ralrimi 2957 . . . . . . 7 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ∀𝑥𝑦 ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
29 sumeq2 14424 . . . . . . 7 (∀𝑥𝑦 ((𝑥𝐴𝐵)‘𝑥) = 𝐵 → Σ𝑥𝑦 ((𝑥𝐴𝐵)‘𝑥) = Σ𝑥𝑦 𝐵)
3028, 29syl 17 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑥𝑦 ((𝑥𝐴𝐵)‘𝑥) = Σ𝑥𝑦 𝐵)
3115, 30eqtrd 2656 . . . . 5 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑧𝑦 ((𝑥𝐴𝐵)‘𝑧) = Σ𝑥𝑦 𝐵)
3231mpteq2dva 4744 . . . 4 (𝜑 → (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑧𝑦 ((𝑥𝐴𝐵)‘𝑧)) = (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑥𝑦 𝐵))
3332rneqd 5353 . . 3 (𝜑 → ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑧𝑦 ((𝑥𝐴𝐵)‘𝑧)) = ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑥𝑦 𝐵))
3433supeq1d 8352 . 2 (𝜑 → sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑧𝑦 ((𝑥𝐴𝐵)‘𝑧)), ℝ*, < ) = sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑥𝑦 𝐵), ℝ*, < ))
356, 34eqtrd 2656 1 (𝜑 → (Σ^‘(𝑥𝐴𝐵)) = sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑥𝑦 𝐵), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wnf 1708  wcel 1990  wral 2912  cin 3573  wss 3574  𝒫 cpw 4158  cmpt 4729  ran crn 5115  cfv 5888  (class class class)co 6650  Fincfn 7955  supcsup 8346  0cc0 9936  +∞cpnf 10071  *cxr 10073   < clt 10074  [,)cico 12177  Σcsu 14416  Σ^csumge0 40579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-ico 12181  df-icc 12182  df-fz 12327  df-seq 12802  df-sum 14417  df-sumge0 40580
This theorem is referenced by:  sge0f1o  40599  sge0xaddlem1  40650  sge0xaddlem2  40651  sge0reuz  40664
  Copyright terms: Public domain W3C validator