| Step | Hyp | Ref
| Expression |
| 1 | | sge0f1o.4 |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| 2 | | sge0f1o.5 |
. . . . . . 7
⊢ (𝜑 → 𝐹:𝐶–1-1-onto→𝐴) |
| 3 | | f1ofo 6144 |
. . . . . . 7
⊢ (𝐹:𝐶–1-1-onto→𝐴 → 𝐹:𝐶–onto→𝐴) |
| 4 | 2, 3 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐹:𝐶–onto→𝐴) |
| 5 | | fornex 7135 |
. . . . . 6
⊢ (𝐶 ∈ 𝑉 → (𝐹:𝐶–onto→𝐴 → 𝐴 ∈ V)) |
| 6 | 1, 4, 5 | sylc 65 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ V) |
| 7 | 6 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ +∞ ∈ ran (𝑛 ∈ 𝐶 ↦ 𝐷)) → 𝐴 ∈ V) |
| 8 | | sge0f1o.1 |
. . . . . 6
⊢
Ⅎ𝑘𝜑 |
| 9 | | sge0f1o.7 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
| 10 | | eqid 2622 |
. . . . . 6
⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵) |
| 11 | 8, 9, 10 | fmptdf 6387 |
. . . . 5
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,]+∞)) |
| 12 | 11 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ +∞ ∈ ran (𝑛 ∈ 𝐶 ↦ 𝐷)) → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,]+∞)) |
| 13 | | pnfex 10093 |
. . . . . . . 8
⊢ +∞
∈ V |
| 14 | | eqid 2622 |
. . . . . . . . 9
⊢ (𝑛 ∈ 𝐶 ↦ 𝐷) = (𝑛 ∈ 𝐶 ↦ 𝐷) |
| 15 | 14 | elrnmpt 5372 |
. . . . . . . 8
⊢ (+∞
∈ V → (+∞ ∈ ran (𝑛 ∈ 𝐶 ↦ 𝐷) ↔ ∃𝑛 ∈ 𝐶 +∞ = 𝐷)) |
| 16 | 13, 15 | ax-mp 5 |
. . . . . . 7
⊢ (+∞
∈ ran (𝑛 ∈ 𝐶 ↦ 𝐷) ↔ ∃𝑛 ∈ 𝐶 +∞ = 𝐷) |
| 17 | 16 | biimpi 206 |
. . . . . 6
⊢ (+∞
∈ ran (𝑛 ∈ 𝐶 ↦ 𝐷) → ∃𝑛 ∈ 𝐶 +∞ = 𝐷) |
| 18 | 17 | adantl 482 |
. . . . 5
⊢ ((𝜑 ∧ +∞ ∈ ran (𝑛 ∈ 𝐶 ↦ 𝐷)) → ∃𝑛 ∈ 𝐶 +∞ = 𝐷) |
| 19 | | sge0f1o.2 |
. . . . . . 7
⊢
Ⅎ𝑛𝜑 |
| 20 | | nfv 1843 |
. . . . . . 7
⊢
Ⅎ𝑛+∞
∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵) |
| 21 | | simp3 1063 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶 ∧ +∞ = 𝐷) → +∞ = 𝐷) |
| 22 | | f1of 6137 |
. . . . . . . . . . . . . . 15
⊢ (𝐹:𝐶–1-1-onto→𝐴 → 𝐹:𝐶⟶𝐴) |
| 23 | 2, 22 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐹:𝐶⟶𝐴) |
| 24 | 23 | ffvelrnda 6359 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → (𝐹‘𝑛) ∈ 𝐴) |
| 25 | | sge0f1o.6 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → (𝐹‘𝑛) = 𝐺) |
| 26 | | nfcv 2764 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘(𝐹‘𝑛) |
| 27 | | nfv 1843 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘(𝐹‘𝑛) = 𝐺 |
| 28 | 26 | nfcsb1 3548 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘⦋(𝐹‘𝑛) / 𝑘⦌𝐵 |
| 29 | | nfcv 2764 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘𝐷 |
| 30 | 28, 29 | nfeq 2776 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘⦋(𝐹‘𝑛) / 𝑘⦌𝐵 = 𝐷 |
| 31 | 27, 30 | nfim 1825 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘((𝐹‘𝑛) = 𝐺 → ⦋(𝐹‘𝑛) / 𝑘⦌𝐵 = 𝐷) |
| 32 | | eqeq1 2626 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = (𝐹‘𝑛) → (𝑘 = 𝐺 ↔ (𝐹‘𝑛) = 𝐺)) |
| 33 | | csbeq1a 3542 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = (𝐹‘𝑛) → 𝐵 = ⦋(𝐹‘𝑛) / 𝑘⦌𝐵) |
| 34 | 33 | eqeq1d 2624 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = (𝐹‘𝑛) → (𝐵 = 𝐷 ↔ ⦋(𝐹‘𝑛) / 𝑘⦌𝐵 = 𝐷)) |
| 35 | 32, 34 | imbi12d 334 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = (𝐹‘𝑛) → ((𝑘 = 𝐺 → 𝐵 = 𝐷) ↔ ((𝐹‘𝑛) = 𝐺 → ⦋(𝐹‘𝑛) / 𝑘⦌𝐵 = 𝐷))) |
| 36 | | sge0f1o.3 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝐺 → 𝐵 = 𝐷) |
| 37 | 26, 31, 35, 36 | vtoclgf 3264 |
. . . . . . . . . . . . 13
⊢ ((𝐹‘𝑛) ∈ 𝐴 → ((𝐹‘𝑛) = 𝐺 → ⦋(𝐹‘𝑛) / 𝑘⦌𝐵 = 𝐷)) |
| 38 | 24, 25, 37 | sylc 65 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → ⦋(𝐹‘𝑛) / 𝑘⦌𝐵 = 𝐷) |
| 39 | 38 | eqcomd 2628 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → 𝐷 = ⦋(𝐹‘𝑛) / 𝑘⦌𝐵) |
| 40 | 39 | 3adant3 1081 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶 ∧ +∞ = 𝐷) → 𝐷 = ⦋(𝐹‘𝑛) / 𝑘⦌𝐵) |
| 41 | 21, 40 | eqtrd 2656 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶 ∧ +∞ = 𝐷) → +∞ = ⦋(𝐹‘𝑛) / 𝑘⦌𝐵) |
| 42 | | simpl 473 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → 𝜑) |
| 43 | 42, 24 | jca 554 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → (𝜑 ∧ (𝐹‘𝑛) ∈ 𝐴)) |
| 44 | | nfv 1843 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘(𝐹‘𝑛) ∈ 𝐴 |
| 45 | 8, 44 | nfan 1828 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘(𝜑 ∧ (𝐹‘𝑛) ∈ 𝐴) |
| 46 | 28 | nfel1 2779 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘⦋(𝐹‘𝑛) / 𝑘⦌𝐵 ∈ (0[,]+∞) |
| 47 | 45, 46 | nfim 1825 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘((𝜑 ∧ (𝐹‘𝑛) ∈ 𝐴) → ⦋(𝐹‘𝑛) / 𝑘⦌𝐵 ∈ (0[,]+∞)) |
| 48 | | eleq1 2689 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = (𝐹‘𝑛) → (𝑘 ∈ 𝐴 ↔ (𝐹‘𝑛) ∈ 𝐴)) |
| 49 | 48 | anbi2d 740 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = (𝐹‘𝑛) → ((𝜑 ∧ 𝑘 ∈ 𝐴) ↔ (𝜑 ∧ (𝐹‘𝑛) ∈ 𝐴))) |
| 50 | 33 | eleq1d 2686 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = (𝐹‘𝑛) → (𝐵 ∈ (0[,]+∞) ↔
⦋(𝐹‘𝑛) / 𝑘⦌𝐵 ∈ (0[,]+∞))) |
| 51 | 49, 50 | imbi12d 334 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (𝐹‘𝑛) → (((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) ↔ ((𝜑 ∧ (𝐹‘𝑛) ∈ 𝐴) → ⦋(𝐹‘𝑛) / 𝑘⦌𝐵 ∈ (0[,]+∞)))) |
| 52 | 26, 47, 51, 9 | vtoclgf 3264 |
. . . . . . . . . . . 12
⊢ ((𝐹‘𝑛) ∈ 𝐴 → ((𝜑 ∧ (𝐹‘𝑛) ∈ 𝐴) → ⦋(𝐹‘𝑛) / 𝑘⦌𝐵 ∈ (0[,]+∞))) |
| 53 | 24, 43, 52 | sylc 65 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → ⦋(𝐹‘𝑛) / 𝑘⦌𝐵 ∈ (0[,]+∞)) |
| 54 | 28, 10, 33 | elrnmpt1sf 39376 |
. . . . . . . . . . 11
⊢ (((𝐹‘𝑛) ∈ 𝐴 ∧ ⦋(𝐹‘𝑛) / 𝑘⦌𝐵 ∈ (0[,]+∞)) →
⦋(𝐹‘𝑛) / 𝑘⦌𝐵 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)) |
| 55 | 24, 53, 54 | syl2anc 693 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → ⦋(𝐹‘𝑛) / 𝑘⦌𝐵 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)) |
| 56 | 55 | 3adant3 1081 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶 ∧ +∞ = 𝐷) → ⦋(𝐹‘𝑛) / 𝑘⦌𝐵 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)) |
| 57 | 41, 56 | eqeltrd 2701 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶 ∧ +∞ = 𝐷) → +∞ ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)) |
| 58 | 57 | 3exp 1264 |
. . . . . . 7
⊢ (𝜑 → (𝑛 ∈ 𝐶 → (+∞ = 𝐷 → +∞ ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)))) |
| 59 | 19, 20, 58 | rexlimd 3026 |
. . . . . 6
⊢ (𝜑 → (∃𝑛 ∈ 𝐶 +∞ = 𝐷 → +∞ ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵))) |
| 60 | 59 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ +∞ ∈ ran (𝑛 ∈ 𝐶 ↦ 𝐷)) → (∃𝑛 ∈ 𝐶 +∞ = 𝐷 → +∞ ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵))) |
| 61 | 18, 60 | mpd 15 |
. . . 4
⊢ ((𝜑 ∧ +∞ ∈ ran (𝑛 ∈ 𝐶 ↦ 𝐷)) → +∞ ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)) |
| 62 | 7, 12, 61 | sge0pnfval 40590 |
. . 3
⊢ ((𝜑 ∧ +∞ ∈ ran (𝑛 ∈ 𝐶 ↦ 𝐷)) →
(Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) = +∞) |
| 63 | 1 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ +∞ ∈ ran (𝑛 ∈ 𝐶 ↦ 𝐷)) → 𝐶 ∈ 𝑉) |
| 64 | 39, 53 | eqeltrd 2701 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → 𝐷 ∈ (0[,]+∞)) |
| 65 | 19, 64, 14 | fmptdf 6387 |
. . . . 5
⊢ (𝜑 → (𝑛 ∈ 𝐶 ↦ 𝐷):𝐶⟶(0[,]+∞)) |
| 66 | 65 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ +∞ ∈ ran (𝑛 ∈ 𝐶 ↦ 𝐷)) → (𝑛 ∈ 𝐶 ↦ 𝐷):𝐶⟶(0[,]+∞)) |
| 67 | | simpr 477 |
. . . 4
⊢ ((𝜑 ∧ +∞ ∈ ran (𝑛 ∈ 𝐶 ↦ 𝐷)) → +∞ ∈ ran (𝑛 ∈ 𝐶 ↦ 𝐷)) |
| 68 | 63, 66, 67 | sge0pnfval 40590 |
. . 3
⊢ ((𝜑 ∧ +∞ ∈ ran (𝑛 ∈ 𝐶 ↦ 𝐷)) →
(Σ^‘(𝑛 ∈ 𝐶 ↦ 𝐷)) = +∞) |
| 69 | 62, 68 | eqtr4d 2659 |
. 2
⊢ ((𝜑 ∧ +∞ ∈ ran (𝑛 ∈ 𝐶 ↦ 𝐷)) →
(Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) =
(Σ^‘(𝑛 ∈ 𝐶 ↦ 𝐷))) |
| 70 | | sumex 14418 |
. . . . . . 7
⊢
Σ𝑘 ∈
𝑦 𝐵 ∈ V |
| 71 | 70 | a1i 11 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘 ∈ 𝑦 𝐵 ∈ V) |
| 72 | | cnvimass 5485 |
. . . . . . . . . . . . 13
⊢ (◡𝐹 “ 𝑦) ⊆ dom 𝐹 |
| 73 | 72 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → (◡𝐹 “ 𝑦) ⊆ dom 𝐹) |
| 74 | | fdm 6051 |
. . . . . . . . . . . . 13
⊢ (𝐹:𝐶⟶𝐴 → dom 𝐹 = 𝐶) |
| 75 | 23, 74 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → dom 𝐹 = 𝐶) |
| 76 | 73, 75 | sseqtrd 3641 |
. . . . . . . . . . 11
⊢ (𝜑 → (◡𝐹 “ 𝑦) ⊆ 𝐶) |
| 77 | | fex 6490 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹:𝐶⟶𝐴 ∧ 𝐶 ∈ 𝑉) → 𝐹 ∈ V) |
| 78 | 23, 1, 77 | syl2anc 693 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐹 ∈ V) |
| 79 | | cnvexg 7112 |
. . . . . . . . . . . . . 14
⊢ (𝐹 ∈ V → ◡𝐹 ∈ V) |
| 80 | 78, 79 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ◡𝐹 ∈ V) |
| 81 | | imaexg 7103 |
. . . . . . . . . . . . 13
⊢ (◡𝐹 ∈ V → (◡𝐹 “ 𝑦) ∈ V) |
| 82 | 80, 81 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (◡𝐹 “ 𝑦) ∈ V) |
| 83 | | elpwg 4166 |
. . . . . . . . . . . 12
⊢ ((◡𝐹 “ 𝑦) ∈ V → ((◡𝐹 “ 𝑦) ∈ 𝒫 𝐶 ↔ (◡𝐹 “ 𝑦) ⊆ 𝐶)) |
| 84 | 82, 83 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → ((◡𝐹 “ 𝑦) ∈ 𝒫 𝐶 ↔ (◡𝐹 “ 𝑦) ⊆ 𝐶)) |
| 85 | 76, 84 | mpbird 247 |
. . . . . . . . . 10
⊢ (𝜑 → (◡𝐹 “ 𝑦) ∈ 𝒫 𝐶) |
| 86 | 85 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (◡𝐹 “ 𝑦) ∈ 𝒫 𝐶) |
| 87 | | f1ocnv 6149 |
. . . . . . . . . . . . 13
⊢ (𝐹:𝐶–1-1-onto→𝐴 → ◡𝐹:𝐴–1-1-onto→𝐶) |
| 88 | 2, 87 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → ◡𝐹:𝐴–1-1-onto→𝐶) |
| 89 | | f1ofun 6139 |
. . . . . . . . . . . 12
⊢ (◡𝐹:𝐴–1-1-onto→𝐶 → Fun ◡𝐹) |
| 90 | 88, 89 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → Fun ◡𝐹) |
| 91 | 90 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Fun ◡𝐹) |
| 92 | | elinel2 3800 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦 ∈ Fin) |
| 93 | 92 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦 ∈ Fin) |
| 94 | | imafi 8259 |
. . . . . . . . . 10
⊢ ((Fun
◡𝐹 ∧ 𝑦 ∈ Fin) → (◡𝐹 “ 𝑦) ∈ Fin) |
| 95 | 91, 93, 94 | syl2anc 693 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (◡𝐹 “ 𝑦) ∈ Fin) |
| 96 | 86, 95 | elind 3798 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (◡𝐹 “ 𝑦) ∈ (𝒫 𝐶 ∩ Fin)) |
| 97 | 96 | adantlr 751 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (◡𝐹 “ 𝑦) ∈ (𝒫 𝐶 ∩ Fin)) |
| 98 | | nfv 1843 |
. . . . . . . . . 10
⊢
Ⅎ𝑘 ¬
+∞ ∈ ran (𝑛
∈ 𝐶 ↦ 𝐷) |
| 99 | 8, 98 | nfan 1828 |
. . . . . . . . 9
⊢
Ⅎ𝑘(𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) |
| 100 | | nfv 1843 |
. . . . . . . . 9
⊢
Ⅎ𝑘 𝑦 ∈ (𝒫 𝐴 ∩ Fin) |
| 101 | 99, 100 | nfan 1828 |
. . . . . . . 8
⊢
Ⅎ𝑘((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) |
| 102 | | nfcv 2764 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑛+∞ |
| 103 | | nfmpt1 4747 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑛(𝑛 ∈ 𝐶 ↦ 𝐷) |
| 104 | 103 | nfrn 5368 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑛ran
(𝑛 ∈ 𝐶 ↦ 𝐷) |
| 105 | 102, 104 | nfel 2777 |
. . . . . . . . . . 11
⊢
Ⅎ𝑛+∞
∈ ran (𝑛 ∈ 𝐶 ↦ 𝐷) |
| 106 | 105 | nfn 1784 |
. . . . . . . . . 10
⊢
Ⅎ𝑛 ¬
+∞ ∈ ran (𝑛
∈ 𝐶 ↦ 𝐷) |
| 107 | 19, 106 | nfan 1828 |
. . . . . . . . 9
⊢
Ⅎ𝑛(𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) |
| 108 | | nfv 1843 |
. . . . . . . . 9
⊢
Ⅎ𝑛 𝑦 ∈ (𝒫 𝐴 ∩ Fin) |
| 109 | 107, 108 | nfan 1828 |
. . . . . . . 8
⊢
Ⅎ𝑛((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) |
| 110 | 95 | adantlr 751 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (◡𝐹 “ 𝑦) ∈ Fin) |
| 111 | | f1of1 6136 |
. . . . . . . . . . . . 13
⊢ (𝐹:𝐶–1-1-onto→𝐴 → 𝐹:𝐶–1-1→𝐴) |
| 112 | 2, 111 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:𝐶–1-1→𝐴) |
| 113 | 112 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐹:𝐶–1-1→𝐴) |
| 114 | 84 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((◡𝐹 “ 𝑦) ∈ 𝒫 𝐶 ↔ (◡𝐹 “ 𝑦) ⊆ 𝐶)) |
| 115 | 86, 114 | mpbid 222 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (◡𝐹 “ 𝑦) ⊆ 𝐶) |
| 116 | | f1ores 6151 |
. . . . . . . . . . 11
⊢ ((𝐹:𝐶–1-1→𝐴 ∧ (◡𝐹 “ 𝑦) ⊆ 𝐶) → (𝐹 ↾ (◡𝐹 “ 𝑦)):(◡𝐹 “ 𝑦)–1-1-onto→(𝐹 “ (◡𝐹 “ 𝑦))) |
| 117 | 113, 115,
116 | syl2anc 693 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹 ↾ (◡𝐹 “ 𝑦)):(◡𝐹 “ 𝑦)–1-1-onto→(𝐹 “ (◡𝐹 “ 𝑦))) |
| 118 | 4 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐹:𝐶–onto→𝐴) |
| 119 | | elpwinss 39216 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦 ⊆ 𝐴) |
| 120 | 119 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦 ⊆ 𝐴) |
| 121 | | foimacnv 6154 |
. . . . . . . . . . . 12
⊢ ((𝐹:𝐶–onto→𝐴 ∧ 𝑦 ⊆ 𝐴) → (𝐹 “ (◡𝐹 “ 𝑦)) = 𝑦) |
| 122 | 118, 120,
121 | syl2anc 693 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹 “ (◡𝐹 “ 𝑦)) = 𝑦) |
| 123 | 122 | f1oeq3d 6134 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐹 ↾ (◡𝐹 “ 𝑦)):(◡𝐹 “ 𝑦)–1-1-onto→(𝐹 “ (◡𝐹 “ 𝑦)) ↔ (𝐹 ↾ (◡𝐹 “ 𝑦)):(◡𝐹 “ 𝑦)–1-1-onto→𝑦)) |
| 124 | 117, 123 | mpbid 222 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹 ↾ (◡𝐹 “ 𝑦)):(◡𝐹 “ 𝑦)–1-1-onto→𝑦) |
| 125 | 124 | adantlr 751 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹 ↾ (◡𝐹 “ 𝑦)):(◡𝐹 “ 𝑦)–1-1-onto→𝑦) |
| 126 | 82 | ad2antrr 762 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑛 ∈ (◡𝐹 “ 𝑦)) → (◡𝐹 “ 𝑦) ∈ V) |
| 127 | | simpll 790 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑛 ∈ (◡𝐹 “ 𝑦)) → 𝜑) |
| 128 | 96 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑛 ∈ (◡𝐹 “ 𝑦)) → (◡𝐹 “ 𝑦) ∈ (𝒫 𝐶 ∩ Fin)) |
| 129 | | simpr 477 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑛 ∈ (◡𝐹 “ 𝑦)) → 𝑛 ∈ (◡𝐹 “ 𝑦)) |
| 130 | 127, 128,
129 | jca31 557 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑛 ∈ (◡𝐹 “ 𝑦)) → ((𝜑 ∧ (◡𝐹 “ 𝑦) ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑛 ∈ (◡𝐹 “ 𝑦))) |
| 131 | | eleq1 2689 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (◡𝐹 “ 𝑦) → (𝑥 ∈ (𝒫 𝐶 ∩ Fin) ↔ (◡𝐹 “ 𝑦) ∈ (𝒫 𝐶 ∩ Fin))) |
| 132 | 131 | anbi2d 740 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (◡𝐹 “ 𝑦) → ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ↔ (𝜑 ∧ (◡𝐹 “ 𝑦) ∈ (𝒫 𝐶 ∩ Fin)))) |
| 133 | | eleq2 2690 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (◡𝐹 “ 𝑦) → (𝑛 ∈ 𝑥 ↔ 𝑛 ∈ (◡𝐹 “ 𝑦))) |
| 134 | 132, 133 | anbi12d 747 |
. . . . . . . . . . . 12
⊢ (𝑥 = (◡𝐹 “ 𝑦) → (((𝜑 ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑛 ∈ 𝑥) ↔ ((𝜑 ∧ (◡𝐹 “ 𝑦) ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑛 ∈ (◡𝐹 “ 𝑦)))) |
| 135 | | reseq2 5391 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (◡𝐹 “ 𝑦) → (𝐹 ↾ 𝑥) = (𝐹 ↾ (◡𝐹 “ 𝑦))) |
| 136 | 135 | fveq1d 6193 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (◡𝐹 “ 𝑦) → ((𝐹 ↾ 𝑥)‘𝑛) = ((𝐹 ↾ (◡𝐹 “ 𝑦))‘𝑛)) |
| 137 | 136 | eqeq1d 2624 |
. . . . . . . . . . . 12
⊢ (𝑥 = (◡𝐹 “ 𝑦) → (((𝐹 ↾ 𝑥)‘𝑛) = 𝐺 ↔ ((𝐹 ↾ (◡𝐹 “ 𝑦))‘𝑛) = 𝐺)) |
| 138 | 134, 137 | imbi12d 334 |
. . . . . . . . . . 11
⊢ (𝑥 = (◡𝐹 “ 𝑦) → ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑛 ∈ 𝑥) → ((𝐹 ↾ 𝑥)‘𝑛) = 𝐺) ↔ (((𝜑 ∧ (◡𝐹 “ 𝑦) ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑛 ∈ (◡𝐹 “ 𝑦)) → ((𝐹 ↾ (◡𝐹 “ 𝑦))‘𝑛) = 𝐺))) |
| 139 | | fvres 6207 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ 𝑥 → ((𝐹 ↾ 𝑥)‘𝑛) = (𝐹‘𝑛)) |
| 140 | 139 | adantl 482 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑛 ∈ 𝑥) → ((𝐹 ↾ 𝑥)‘𝑛) = (𝐹‘𝑛)) |
| 141 | | simpll 790 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑛 ∈ 𝑥) → 𝜑) |
| 142 | | elpwinss 39216 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ (𝒫 𝐶 ∩ Fin) → 𝑥 ⊆ 𝐶) |
| 143 | 142 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → 𝑥 ⊆ 𝐶) |
| 144 | 143 | sselda 3603 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑛 ∈ 𝑥) → 𝑛 ∈ 𝐶) |
| 145 | 141, 144,
25 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑛 ∈ 𝑥) → (𝐹‘𝑛) = 𝐺) |
| 146 | 140, 145 | eqtrd 2656 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑛 ∈ 𝑥) → ((𝐹 ↾ 𝑥)‘𝑛) = 𝐺) |
| 147 | 138, 146 | vtoclg 3266 |
. . . . . . . . . 10
⊢ ((◡𝐹 “ 𝑦) ∈ V → (((𝜑 ∧ (◡𝐹 “ 𝑦) ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑛 ∈ (◡𝐹 “ 𝑦)) → ((𝐹 ↾ (◡𝐹 “ 𝑦))‘𝑛) = 𝐺)) |
| 148 | 126, 130,
147 | sylc 65 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑛 ∈ (◡𝐹 “ 𝑦)) → ((𝐹 ↾ (◡𝐹 “ 𝑦))‘𝑛) = 𝐺) |
| 149 | 148 | adantllr 755 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑛 ∈ (◡𝐹 “ 𝑦)) → ((𝐹 ↾ (◡𝐹 “ 𝑦))‘𝑛) = 𝐺) |
| 150 | 82 | ad3antrrr 766 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ 𝑦) → (◡𝐹 “ 𝑦) ∈ V) |
| 151 | | simpll 790 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ 𝑦) → (𝜑 ∧ ¬ +∞ ∈ ran (𝑛 ∈ 𝐶 ↦ 𝐷))) |
| 152 | 85 | ad3antrrr 766 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ 𝑦) → (◡𝐹 “ 𝑦) ∈ 𝒫 𝐶) |
| 153 | 110 | adantr 481 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ 𝑦) → (◡𝐹 “ 𝑦) ∈ Fin) |
| 154 | 152, 153 | elind 3798 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ 𝑦) → (◡𝐹 “ 𝑦) ∈ (𝒫 𝐶 ∩ Fin)) |
| 155 | | simpr 477 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ 𝑦) → 𝑘 ∈ 𝑦) |
| 156 | 122 | eqcomd 2628 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦 = (𝐹 “ (◡𝐹 “ 𝑦))) |
| 157 | 156 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ 𝑦) → 𝑦 = (𝐹 “ (◡𝐹 “ 𝑦))) |
| 158 | 155, 157 | eleqtrd 2703 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ 𝑦) → 𝑘 ∈ (𝐹 “ (◡𝐹 “ 𝑦))) |
| 159 | 158 | adantllr 755 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ 𝑦) → 𝑘 ∈ (𝐹 “ (◡𝐹 “ 𝑦))) |
| 160 | 151, 154,
159 | jca31 557 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ 𝑦) → (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ (◡𝐹 “ 𝑦) ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹 “ (◡𝐹 “ 𝑦)))) |
| 161 | 131 | anbi2d 740 |
. . . . . . . . . . . 12
⊢ (𝑥 = (◡𝐹 “ 𝑦) → (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ↔ ((𝜑 ∧ ¬ +∞ ∈ ran (𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ (◡𝐹 “ 𝑦) ∈ (𝒫 𝐶 ∩ Fin)))) |
| 162 | | imaeq2 5462 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (◡𝐹 “ 𝑦) → (𝐹 “ 𝑥) = (𝐹 “ (◡𝐹 “ 𝑦))) |
| 163 | 162 | eleq2d 2687 |
. . . . . . . . . . . 12
⊢ (𝑥 = (◡𝐹 “ 𝑦) → (𝑘 ∈ (𝐹 “ 𝑥) ↔ 𝑘 ∈ (𝐹 “ (◡𝐹 “ 𝑦)))) |
| 164 | 161, 163 | anbi12d 747 |
. . . . . . . . . . 11
⊢ (𝑥 = (◡𝐹 “ 𝑦) → ((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹 “ 𝑥)) ↔ (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ (◡𝐹 “ 𝑦) ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹 “ (◡𝐹 “ 𝑦))))) |
| 165 | 164 | imbi1d 331 |
. . . . . . . . . 10
⊢ (𝑥 = (◡𝐹 “ 𝑦) → (((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹 “ 𝑥)) → 𝐵 ∈ ℂ) ↔ ((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ (◡𝐹 “ 𝑦) ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹 “ (◡𝐹 “ 𝑦))) → 𝐵 ∈ ℂ))) |
| 166 | | rge0ssre 12280 |
. . . . . . . . . . . . 13
⊢
(0[,)+∞) ⊆ ℝ |
| 167 | | ax-resscn 9993 |
. . . . . . . . . . . . 13
⊢ ℝ
⊆ ℂ |
| 168 | 166, 167 | sstri 3612 |
. . . . . . . . . . . 12
⊢
(0[,)+∞) ⊆ ℂ |
| 169 | | simplll 798 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹 “ 𝑥)) → 𝜑) |
| 170 | | simpllr 799 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹 “ 𝑥)) → ¬ +∞ ∈ ran (𝑛 ∈ 𝐶 ↦ 𝐷)) |
| 171 | | fimass 6081 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹:𝐶⟶𝐴 → (𝐹 “ 𝑥) ⊆ 𝐴) |
| 172 | 23, 171 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐹 “ 𝑥) ⊆ 𝐴) |
| 173 | 172 | ad2antrr 762 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹 “ 𝑥)) → (𝐹 “ 𝑥) ⊆ 𝐴) |
| 174 | | simpr 477 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹 “ 𝑥)) → 𝑘 ∈ (𝐹 “ 𝑥)) |
| 175 | 173, 174 | sseldd 3604 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹 “ 𝑥)) → 𝑘 ∈ 𝐴) |
| 176 | 175 | adantllr 755 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹 “ 𝑥)) → 𝑘 ∈ 𝐴) |
| 177 | | foelrni 6244 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹:𝐶–onto→𝐴 ∧ 𝑘 ∈ 𝐴) → ∃𝑛 ∈ 𝐶 (𝐹‘𝑛) = 𝑘) |
| 178 | 4, 177 | sylan 488 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ∃𝑛 ∈ 𝐶 (𝐹‘𝑛) = 𝑘) |
| 179 | 178 | adantlr 751 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑘 ∈ 𝐴) → ∃𝑛 ∈ 𝐶 (𝐹‘𝑛) = 𝑘) |
| 180 | | nfv 1843 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑛 𝑘 ∈ 𝐴 |
| 181 | 107, 180 | nfan 1828 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑛((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑘 ∈ 𝐴) |
| 182 | | nfv 1843 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑛 𝐵 ∈
(0[,)+∞) |
| 183 | | csbid 3541 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
⦋𝑘 /
𝑘⦌𝐵 = 𝐵 |
| 184 | 183 | eqcomi 2631 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝐵 = ⦋𝑘 / 𝑘⦌𝐵 |
| 185 | 184 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶 ∧ (𝐹‘𝑛) = 𝑘) → 𝐵 = ⦋𝑘 / 𝑘⦌𝐵) |
| 186 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐹‘𝑛) = 𝑘 → (𝐹‘𝑛) = 𝑘) |
| 187 | 186 | eqcomd 2628 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐹‘𝑛) = 𝑘 → 𝑘 = (𝐹‘𝑛)) |
| 188 | 187 | csbeq1d 3540 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐹‘𝑛) = 𝑘 → ⦋𝑘 / 𝑘⦌𝐵 = ⦋(𝐹‘𝑛) / 𝑘⦌𝐵) |
| 189 | 188 | 3ad2ant3 1084 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶 ∧ (𝐹‘𝑛) = 𝑘) → ⦋𝑘 / 𝑘⦌𝐵 = ⦋(𝐹‘𝑛) / 𝑘⦌𝐵) |
| 190 | 38 | idi 2 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → ⦋(𝐹‘𝑛) / 𝑘⦌𝐵 = 𝐷) |
| 191 | 190 | 3adant3 1081 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶 ∧ (𝐹‘𝑛) = 𝑘) → ⦋(𝐹‘𝑛) / 𝑘⦌𝐵 = 𝐷) |
| 192 | 185, 189,
191 | 3eqtrd 2660 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶 ∧ (𝐹‘𝑛) = 𝑘) → 𝐵 = 𝐷) |
| 193 | 192 | 3adant1r 1319 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑛 ∈ 𝐶 ∧ (𝐹‘𝑛) = 𝑘) → 𝐵 = 𝐷) |
| 194 | | 0xr 10086 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 0 ∈
ℝ* |
| 195 | 194 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑛 ∈ 𝐶) ∧ ¬ 𝐷 ∈ (0[,)+∞)) → 0 ∈
ℝ*) |
| 196 | | pnfxr 10092 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ +∞
∈ ℝ* |
| 197 | 196 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑛 ∈ 𝐶) ∧ ¬ 𝐷 ∈ (0[,)+∞)) → +∞
∈ ℝ*) |
| 198 | 64 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑛 ∈ 𝐶) ∧ ¬ 𝐷 ∈ (0[,)+∞)) → 𝐷 ∈
(0[,]+∞)) |
| 199 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑛 ∈ 𝐶) ∧ ¬ 𝐷 ∈ (0[,)+∞)) → ¬ 𝐷 ∈
(0[,)+∞)) |
| 200 | 195, 197,
198, 199 | eliccnelico 39756 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑛 ∈ 𝐶) ∧ ¬ 𝐷 ∈ (0[,)+∞)) → 𝐷 = +∞) |
| 201 | 200 | eqcomd 2628 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑛 ∈ 𝐶) ∧ ¬ 𝐷 ∈ (0[,)+∞)) → +∞ =
𝐷) |
| 202 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → 𝑛 ∈ 𝐶) |
| 203 | 64 | idi 2 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → 𝐷 ∈ (0[,]+∞)) |
| 204 | 14 | elrnmpt1 5374 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑛 ∈ 𝐶 ∧ 𝐷 ∈ (0[,]+∞)) → 𝐷 ∈ ran (𝑛 ∈ 𝐶 ↦ 𝐷)) |
| 205 | 202, 203,
204 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → 𝐷 ∈ ran (𝑛 ∈ 𝐶 ↦ 𝐷)) |
| 206 | 205 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑛 ∈ 𝐶) ∧ ¬ 𝐷 ∈ (0[,)+∞)) → 𝐷 ∈ ran (𝑛 ∈ 𝐶 ↦ 𝐷)) |
| 207 | 201, 206 | eqeltrd 2701 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑛 ∈ 𝐶) ∧ ¬ 𝐷 ∈ (0[,)+∞)) → +∞
∈ ran (𝑛 ∈ 𝐶 ↦ 𝐷)) |
| 208 | 207 | adantllr 755 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑛 ∈ 𝐶) ∧ ¬ 𝐷 ∈ (0[,)+∞)) → +∞
∈ ran (𝑛 ∈ 𝐶 ↦ 𝐷)) |
| 209 | | simpllr 799 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑛 ∈ 𝐶) ∧ ¬ 𝐷 ∈ (0[,)+∞)) → ¬
+∞ ∈ ran (𝑛
∈ 𝐶 ↦ 𝐷)) |
| 210 | 208, 209 | condan 835 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑛 ∈ 𝐶) → 𝐷 ∈ (0[,)+∞)) |
| 211 | 210 | 3adant3 1081 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑛 ∈ 𝐶 ∧ (𝐹‘𝑛) = 𝑘) → 𝐷 ∈ (0[,)+∞)) |
| 212 | 193, 211 | eqeltrd 2701 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑛 ∈ 𝐶 ∧ (𝐹‘𝑛) = 𝑘) → 𝐵 ∈ (0[,)+∞)) |
| 213 | 212 | 3exp 1264 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) → (𝑛 ∈ 𝐶 → ((𝐹‘𝑛) = 𝑘 → 𝐵 ∈ (0[,)+∞)))) |
| 214 | 213 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑘 ∈ 𝐴) → (𝑛 ∈ 𝐶 → ((𝐹‘𝑛) = 𝑘 → 𝐵 ∈ (0[,)+∞)))) |
| 215 | 181, 182,
214 | rexlimd 3026 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑘 ∈ 𝐴) → (∃𝑛 ∈ 𝐶 (𝐹‘𝑛) = 𝑘 → 𝐵 ∈ (0[,)+∞))) |
| 216 | 179, 215 | mpd 15 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) |
| 217 | 169, 170,
176, 216 | syl21anc 1325 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹 “ 𝑥)) → 𝐵 ∈ (0[,)+∞)) |
| 218 | 168, 217 | sseldi 3601 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹 “ 𝑥)) → 𝐵 ∈ ℂ) |
| 219 | 218 | idi 2 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹 “ 𝑥)) → 𝐵 ∈ ℂ) |
| 220 | 165, 219 | vtoclg 3266 |
. . . . . . . . 9
⊢ ((◡𝐹 “ 𝑦) ∈ V → ((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ (◡𝐹 “ 𝑦) ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹 “ (◡𝐹 “ 𝑦))) → 𝐵 ∈ ℂ)) |
| 221 | 150, 160,
220 | sylc 65 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ 𝑦) → 𝐵 ∈ ℂ) |
| 222 | 101, 109,
36, 110, 125, 149, 221 | fsumf1of 39806 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘 ∈ 𝑦 𝐵 = Σ𝑛 ∈ (◡𝐹 “ 𝑦)𝐷) |
| 223 | | sumeq1 14419 |
. . . . . . . . 9
⊢ (𝑥 = (◡𝐹 “ 𝑦) → Σ𝑛 ∈ 𝑥 𝐷 = Σ𝑛 ∈ (◡𝐹 “ 𝑦)𝐷) |
| 224 | 223 | eqeq2d 2632 |
. . . . . . . 8
⊢ (𝑥 = (◡𝐹 “ 𝑦) → (Σ𝑘 ∈ 𝑦 𝐵 = Σ𝑛 ∈ 𝑥 𝐷 ↔ Σ𝑘 ∈ 𝑦 𝐵 = Σ𝑛 ∈ (◡𝐹 “ 𝑦)𝐷)) |
| 225 | 224 | rspcev 3309 |
. . . . . . 7
⊢ (((◡𝐹 “ 𝑦) ∈ (𝒫 𝐶 ∩ Fin) ∧ Σ𝑘 ∈ 𝑦 𝐵 = Σ𝑛 ∈ (◡𝐹 “ 𝑦)𝐷) → ∃𝑥 ∈ (𝒫 𝐶 ∩ Fin)Σ𝑘 ∈ 𝑦 𝐵 = Σ𝑛 ∈ 𝑥 𝐷) |
| 226 | 97, 222, 225 | syl2anc 693 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ∃𝑥 ∈ (𝒫 𝐶 ∩ Fin)Σ𝑘 ∈ 𝑦 𝐵 = Σ𝑛 ∈ 𝑥 𝐷) |
| 227 | 71, 226 | rnmptssrn 39368 |
. . . . 5
⊢ ((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) → ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘 ∈ 𝑦 𝐵) ⊆ ran (𝑥 ∈ (𝒫 𝐶 ∩ Fin) ↦ Σ𝑛 ∈ 𝑥 𝐷)) |
| 228 | | sumex 14418 |
. . . . . . 7
⊢
Σ𝑛 ∈
𝑥 𝐷 ∈ V |
| 229 | 228 | a1i 11 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → Σ𝑛 ∈ 𝑥 𝐷 ∈ V) |
| 230 | 6, 172 | ssexd 4805 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐹 “ 𝑥) ∈ V) |
| 231 | | elpwg 4166 |
. . . . . . . . . . . 12
⊢ ((𝐹 “ 𝑥) ∈ V → ((𝐹 “ 𝑥) ∈ 𝒫 𝐴 ↔ (𝐹 “ 𝑥) ⊆ 𝐴)) |
| 232 | 230, 231 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐹 “ 𝑥) ∈ 𝒫 𝐴 ↔ (𝐹 “ 𝑥) ⊆ 𝐴)) |
| 233 | 172, 232 | mpbird 247 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹 “ 𝑥) ∈ 𝒫 𝐴) |
| 234 | 233 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐹 “ 𝑥) ∈ 𝒫 𝐴) |
| 235 | | ffun 6048 |
. . . . . . . . . . . 12
⊢ (𝐹:𝐶⟶𝐴 → Fun 𝐹) |
| 236 | 23, 235 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → Fun 𝐹) |
| 237 | 236 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → Fun 𝐹) |
| 238 | | elinel2 3800 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (𝒫 𝐶 ∩ Fin) → 𝑥 ∈ Fin) |
| 239 | 238 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → 𝑥 ∈ Fin) |
| 240 | | imafi 8259 |
. . . . . . . . . 10
⊢ ((Fun
𝐹 ∧ 𝑥 ∈ Fin) → (𝐹 “ 𝑥) ∈ Fin) |
| 241 | 237, 239,
240 | syl2anc 693 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐹 “ 𝑥) ∈ Fin) |
| 242 | 234, 241 | elind 3798 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐹 “ 𝑥) ∈ (𝒫 𝐴 ∩ Fin)) |
| 243 | 242 | adantlr 751 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐹 “ 𝑥) ∈ (𝒫 𝐴 ∩ Fin)) |
| 244 | | nfv 1843 |
. . . . . . . . . 10
⊢
Ⅎ𝑘 𝑥 ∈ (𝒫 𝐶 ∩ Fin) |
| 245 | 99, 244 | nfan 1828 |
. . . . . . . . 9
⊢
Ⅎ𝑘((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) |
| 246 | | nfv 1843 |
. . . . . . . . . 10
⊢
Ⅎ𝑛 𝑥 ∈ (𝒫 𝐶 ∩ Fin) |
| 247 | 107, 246 | nfan 1828 |
. . . . . . . . 9
⊢
Ⅎ𝑛((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) |
| 248 | 238 | adantl 482 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → 𝑥 ∈ Fin) |
| 249 | 112 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → 𝐹:𝐶–1-1→𝐴) |
| 250 | | f1ores 6151 |
. . . . . . . . . . 11
⊢ ((𝐹:𝐶–1-1→𝐴 ∧ 𝑥 ⊆ 𝐶) → (𝐹 ↾ 𝑥):𝑥–1-1-onto→(𝐹 “ 𝑥)) |
| 251 | 249, 143,
250 | syl2anc 693 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐹 ↾ 𝑥):𝑥–1-1-onto→(𝐹 “ 𝑥)) |
| 252 | 251 | adantlr 751 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐹 ↾ 𝑥):𝑥–1-1-onto→(𝐹 “ 𝑥)) |
| 253 | 146 | adantllr 755 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑛 ∈ 𝑥) → ((𝐹 ↾ 𝑥)‘𝑛) = 𝐺) |
| 254 | 245, 247,
36, 248, 252, 253, 218 | fsumf1of 39806 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → Σ𝑘 ∈ (𝐹 “ 𝑥)𝐵 = Σ𝑛 ∈ 𝑥 𝐷) |
| 255 | 254 | eqcomd 2628 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → Σ𝑛 ∈ 𝑥 𝐷 = Σ𝑘 ∈ (𝐹 “ 𝑥)𝐵) |
| 256 | | sumeq1 14419 |
. . . . . . . . 9
⊢ (𝑦 = (𝐹 “ 𝑥) → Σ𝑘 ∈ 𝑦 𝐵 = Σ𝑘 ∈ (𝐹 “ 𝑥)𝐵) |
| 257 | 256 | eqeq2d 2632 |
. . . . . . . 8
⊢ (𝑦 = (𝐹 “ 𝑥) → (Σ𝑛 ∈ 𝑥 𝐷 = Σ𝑘 ∈ 𝑦 𝐵 ↔ Σ𝑛 ∈ 𝑥 𝐷 = Σ𝑘 ∈ (𝐹 “ 𝑥)𝐵)) |
| 258 | 257 | rspcev 3309 |
. . . . . . 7
⊢ (((𝐹 “ 𝑥) ∈ (𝒫 𝐴 ∩ Fin) ∧ Σ𝑛 ∈ 𝑥 𝐷 = Σ𝑘 ∈ (𝐹 “ 𝑥)𝐵) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)Σ𝑛 ∈ 𝑥 𝐷 = Σ𝑘 ∈ 𝑦 𝐵) |
| 259 | 243, 255,
258 | syl2anc 693 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)Σ𝑛 ∈ 𝑥 𝐷 = Σ𝑘 ∈ 𝑦 𝐵) |
| 260 | 229, 259 | rnmptssrn 39368 |
. . . . 5
⊢ ((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) → ran (𝑥 ∈ (𝒫 𝐶 ∩ Fin) ↦ Σ𝑛 ∈ 𝑥 𝐷) ⊆ ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘 ∈ 𝑦 𝐵)) |
| 261 | 227, 260 | eqssd 3620 |
. . . 4
⊢ ((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) → ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘 ∈ 𝑦 𝐵) = ran (𝑥 ∈ (𝒫 𝐶 ∩ Fin) ↦ Σ𝑛 ∈ 𝑥 𝐷)) |
| 262 | 261 | supeq1d 8352 |
. . 3
⊢ ((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) → sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘 ∈ 𝑦 𝐵), ℝ*, < ) = sup(ran
(𝑥 ∈ (𝒫 𝐶 ∩ Fin) ↦ Σ𝑛 ∈ 𝑥 𝐷), ℝ*, <
)) |
| 263 | 6 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) → 𝐴 ∈ V) |
| 264 | 99, 263, 216 | sge0revalmpt 40595 |
. . 3
⊢ ((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) →
(Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) = sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘 ∈ 𝑦 𝐵), ℝ*, <
)) |
| 265 | 1 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) → 𝐶 ∈ 𝑉) |
| 266 | 107, 265,
210 | sge0revalmpt 40595 |
. . 3
⊢ ((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) →
(Σ^‘(𝑛 ∈ 𝐶 ↦ 𝐷)) = sup(ran (𝑥 ∈ (𝒫 𝐶 ∩ Fin) ↦ Σ𝑛 ∈ 𝑥 𝐷), ℝ*, <
)) |
| 267 | 262, 264,
266 | 3eqtr4d 2666 |
. 2
⊢ ((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) →
(Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) =
(Σ^‘(𝑛 ∈ 𝐶 ↦ 𝐷))) |
| 268 | 69, 267 | pm2.61dan 832 |
1
⊢ (𝜑 →
(Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) =
(Σ^‘(𝑛 ∈ 𝐶 ↦ 𝐷))) |