![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fsumlesge0 | Structured version Visualization version GIF version |
Description: Every finite subsum of nonnegative reals is less than or equal to the extended sum over the whole (possibly infinite) domain. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
fsumlesge0.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
fsumlesge0.f | ⊢ (𝜑 → 𝐹:𝑋⟶(0[,)+∞)) |
fsumlesge0.y | ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
fsumlesge0.fi | ⊢ (𝜑 → 𝑌 ∈ Fin) |
Ref | Expression |
---|---|
fsumlesge0 | ⊢ (𝜑 → Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) ≤ (Σ^‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsumlesge0.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝑋⟶(0[,)+∞)) | |
2 | 1 | sge0rnre 40581 | . . . 4 ⊢ (𝜑 → ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 (𝐹‘𝑧)) ⊆ ℝ) |
3 | ressxr 10083 | . . . . 5 ⊢ ℝ ⊆ ℝ* | |
4 | 3 | a1i 11 | . . . 4 ⊢ (𝜑 → ℝ ⊆ ℝ*) |
5 | 2, 4 | sstrd 3613 | . . 3 ⊢ (𝜑 → ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 (𝐹‘𝑧)) ⊆ ℝ*) |
6 | fsumlesge0.y | . . . . . . 7 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) | |
7 | fsumlesge0.x | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
8 | 7, 6 | ssexd 4805 | . . . . . . . 8 ⊢ (𝜑 → 𝑌 ∈ V) |
9 | elpwg 4166 | . . . . . . . 8 ⊢ (𝑌 ∈ V → (𝑌 ∈ 𝒫 𝑋 ↔ 𝑌 ⊆ 𝑋)) | |
10 | 8, 9 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝑌 ∈ 𝒫 𝑋 ↔ 𝑌 ⊆ 𝑋)) |
11 | 6, 10 | mpbird 247 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝒫 𝑋) |
12 | fsumlesge0.fi | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ Fin) | |
13 | 11, 12 | elind 3798 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (𝒫 𝑋 ∩ Fin)) |
14 | fveq2 6191 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → (𝐹‘𝑥) = (𝐹‘𝑧)) | |
15 | 14 | cbvsumv 14426 | . . . . . 6 ⊢ Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) = Σ𝑧 ∈ 𝑌 (𝐹‘𝑧) |
16 | 15 | a1i 11 | . . . . 5 ⊢ (𝜑 → Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) = Σ𝑧 ∈ 𝑌 (𝐹‘𝑧)) |
17 | sumeq1 14419 | . . . . . . 7 ⊢ (𝑦 = 𝑌 → Σ𝑧 ∈ 𝑦 (𝐹‘𝑧) = Σ𝑧 ∈ 𝑌 (𝐹‘𝑧)) | |
18 | 17 | eqeq2d 2632 | . . . . . 6 ⊢ (𝑦 = 𝑌 → (Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) = Σ𝑧 ∈ 𝑦 (𝐹‘𝑧) ↔ Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) = Σ𝑧 ∈ 𝑌 (𝐹‘𝑧))) |
19 | 18 | rspcev 3309 | . . . . 5 ⊢ ((𝑌 ∈ (𝒫 𝑋 ∩ Fin) ∧ Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) = Σ𝑧 ∈ 𝑌 (𝐹‘𝑧)) → ∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) = Σ𝑧 ∈ 𝑦 (𝐹‘𝑧)) |
20 | 13, 16, 19 | syl2anc 693 | . . . 4 ⊢ (𝜑 → ∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) = Σ𝑧 ∈ 𝑦 (𝐹‘𝑧)) |
21 | sumex 14418 | . . . . . 6 ⊢ Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) ∈ V | |
22 | 21 | a1i 11 | . . . . 5 ⊢ (𝜑 → Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) ∈ V) |
23 | eqid 2622 | . . . . . 6 ⊢ (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 (𝐹‘𝑧)) = (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 (𝐹‘𝑧)) | |
24 | 23 | elrnmpt 5372 | . . . . 5 ⊢ (Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) ∈ V → (Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 (𝐹‘𝑧)) ↔ ∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) = Σ𝑧 ∈ 𝑦 (𝐹‘𝑧))) |
25 | 22, 24 | syl 17 | . . . 4 ⊢ (𝜑 → (Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 (𝐹‘𝑧)) ↔ ∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) = Σ𝑧 ∈ 𝑦 (𝐹‘𝑧))) |
26 | 20, 25 | mpbird 247 | . . 3 ⊢ (𝜑 → Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 (𝐹‘𝑧))) |
27 | supxrub 12154 | . . 3 ⊢ ((ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 (𝐹‘𝑧)) ⊆ ℝ* ∧ Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 (𝐹‘𝑧))) → Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) ≤ sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 (𝐹‘𝑧)), ℝ*, < )) | |
28 | 5, 26, 27 | syl2anc 693 | . 2 ⊢ (𝜑 → Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) ≤ sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 (𝐹‘𝑧)), ℝ*, < )) |
29 | 7, 1 | sge0reval 40589 | . . 3 ⊢ (𝜑 → (Σ^‘𝐹) = sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 (𝐹‘𝑧)), ℝ*, < )) |
30 | 29 | eqcomd 2628 | . 2 ⊢ (𝜑 → sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 (𝐹‘𝑧)), ℝ*, < ) = (Σ^‘𝐹)) |
31 | 28, 30 | breqtrd 4679 | 1 ⊢ (𝜑 → Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) ≤ (Σ^‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1483 ∈ wcel 1990 ∃wrex 2913 Vcvv 3200 ∩ cin 3573 ⊆ wss 3574 𝒫 cpw 4158 class class class wbr 4653 ↦ cmpt 4729 ran crn 5115 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 Fincfn 7955 supcsup 8346 ℝcr 9935 0cc0 9936 +∞cpnf 10071 ℝ*cxr 10073 < clt 10074 ≤ cle 10075 [,)cico 12177 Σcsu 14416 Σ^csumge0 40579 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-oi 8415 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-ico 12181 df-icc 12182 df-fz 12327 df-fzo 12466 df-seq 12802 df-exp 12861 df-hash 13118 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-clim 14219 df-sum 14417 df-sumge0 40580 |
This theorem is referenced by: sge0fsum 40604 sge0rnbnd 40610 sge0split 40626 |
Copyright terms: Public domain | W3C validator |