![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > shftuz | Structured version Visualization version GIF version |
Description: A shift of the upper integers. (Contributed by Mario Carneiro, 5-Nov-2013.) |
Ref | Expression |
---|---|
shftuz | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)} = (ℤ≥‘(𝐵 + 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 2921 | . 2 ⊢ {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)} = {𝑥 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵))} | |
2 | simp2 1062 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ 𝑥 ∈ ℂ ∧ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)) → 𝑥 ∈ ℂ) | |
3 | zcn 11382 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℂ) | |
4 | 3 | 3ad2ant1 1082 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ 𝑥 ∈ ℂ ∧ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)) → 𝐴 ∈ ℂ) |
5 | 2, 4 | npcand 10396 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑥 ∈ ℂ ∧ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)) → ((𝑥 − 𝐴) + 𝐴) = 𝑥) |
6 | eluzadd 11716 | . . . . . . . . 9 ⊢ (((𝑥 − 𝐴) ∈ (ℤ≥‘𝐵) ∧ 𝐴 ∈ ℤ) → ((𝑥 − 𝐴) + 𝐴) ∈ (ℤ≥‘(𝐵 + 𝐴))) | |
7 | 6 | ancoms 469 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)) → ((𝑥 − 𝐴) + 𝐴) ∈ (ℤ≥‘(𝐵 + 𝐴))) |
8 | 7 | 3adant2 1080 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑥 ∈ ℂ ∧ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)) → ((𝑥 − 𝐴) + 𝐴) ∈ (ℤ≥‘(𝐵 + 𝐴))) |
9 | 5, 8 | eqeltrrd 2702 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑥 ∈ ℂ ∧ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)) → 𝑥 ∈ (ℤ≥‘(𝐵 + 𝐴))) |
10 | 9 | 3expib 1268 | . . . . 5 ⊢ (𝐴 ∈ ℤ → ((𝑥 ∈ ℂ ∧ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)) → 𝑥 ∈ (ℤ≥‘(𝐵 + 𝐴)))) |
11 | 10 | adantr 481 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑥 ∈ ℂ ∧ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)) → 𝑥 ∈ (ℤ≥‘(𝐵 + 𝐴)))) |
12 | eluzelcn 11699 | . . . . . 6 ⊢ (𝑥 ∈ (ℤ≥‘(𝐵 + 𝐴)) → 𝑥 ∈ ℂ) | |
13 | 12 | a1i 11 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑥 ∈ (ℤ≥‘(𝐵 + 𝐴)) → 𝑥 ∈ ℂ)) |
14 | eluzsub 11717 | . . . . . . 7 ⊢ ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝑥 ∈ (ℤ≥‘(𝐵 + 𝐴))) → (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)) | |
15 | 14 | 3expia 1267 | . . . . . 6 ⊢ ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑥 ∈ (ℤ≥‘(𝐵 + 𝐴)) → (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵))) |
16 | 15 | ancoms 469 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑥 ∈ (ℤ≥‘(𝐵 + 𝐴)) → (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵))) |
17 | 13, 16 | jcad 555 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑥 ∈ (ℤ≥‘(𝐵 + 𝐴)) → (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)))) |
18 | 11, 17 | impbid 202 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑥 ∈ ℂ ∧ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)) ↔ 𝑥 ∈ (ℤ≥‘(𝐵 + 𝐴)))) |
19 | 18 | abbi1dv 2743 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → {𝑥 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵))} = (ℤ≥‘(𝐵 + 𝐴))) |
20 | 1, 19 | syl5eq 2668 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)} = (ℤ≥‘(𝐵 + 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 {cab 2608 {crab 2916 ‘cfv 5888 (class class class)co 6650 ℂcc 9934 + caddc 9939 − cmin 10266 ℤcz 11377 ℤ≥cuz 11687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 |
This theorem is referenced by: seqshft 13825 uzmptshftfval 38545 |
Copyright terms: Public domain | W3C validator |