| Step | Hyp | Ref
| Expression |
| 1 | | resubcl 10345 |
. . . 4
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 − 𝑦) ∈ ℝ) |
| 2 | 1 | adantl 482 |
. . 3
⊢ (((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+)
∧ (𝑥 ∈ ℝ
∧ 𝑦 ∈ ℝ))
→ (𝑥 − 𝑦) ∈
ℝ) |
| 3 | | 0red 10041 |
. . . . . . 7
⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+)
→ 0 ∈ ℝ) |
| 4 | 3 | s1cld 13383 |
. . . . . 6
⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+)
→ 〈“0”〉 ∈ Word ℝ) |
| 5 | | simpl 473 |
. . . . . 6
⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+)
→ 𝐹 ∈ Word
ℝ) |
| 6 | | ccatcl 13359 |
. . . . . 6
⊢
((〈“0”〉 ∈ Word ℝ ∧ 𝐹 ∈ Word ℝ) →
(〈“0”〉 ++ 𝐹) ∈ Word ℝ) |
| 7 | 4, 5, 6 | syl2anc 693 |
. . . . 5
⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+)
→ (〈“0”〉 ++ 𝐹) ∈ Word ℝ) |
| 8 | | wrdf 13310 |
. . . . 5
⊢
((〈“0”〉 ++ 𝐹) ∈ Word ℝ →
(〈“0”〉 ++ 𝐹):(0..^(#‘(〈“0”〉
++ 𝐹)))⟶ℝ) |
| 9 | 7, 8 | syl 17 |
. . . 4
⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+)
→ (〈“0”〉 ++ 𝐹):(0..^(#‘(〈“0”〉
++ 𝐹)))⟶ℝ) |
| 10 | | ccatlen 13360 |
. . . . . . . . 9
⊢
((〈“0”〉 ∈ Word ℝ ∧ 𝐹 ∈ Word ℝ) →
(#‘(〈“0”〉 ++ 𝐹)) = ((#‘〈“0”〉)
+ (#‘𝐹))) |
| 11 | 4, 5, 10 | syl2anc 693 |
. . . . . . . 8
⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+)
→ (#‘(〈“0”〉 ++ 𝐹)) = ((#‘〈“0”〉)
+ (#‘𝐹))) |
| 12 | | s1len 13385 |
. . . . . . . . 9
⊢
(#‘〈“0”〉) = 1 |
| 13 | 12 | oveq1i 6660 |
. . . . . . . 8
⊢
((#‘〈“0”〉) + (#‘𝐹)) = (1 + (#‘𝐹)) |
| 14 | 11, 13 | syl6eq 2672 |
. . . . . . 7
⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+)
→ (#‘(〈“0”〉 ++ 𝐹)) = (1 + (#‘𝐹))) |
| 15 | | 1cnd 10056 |
. . . . . . . 8
⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+)
→ 1 ∈ ℂ) |
| 16 | | wrdfin 13323 |
. . . . . . . . . 10
⊢ (𝐹 ∈ Word ℝ →
𝐹 ∈
Fin) |
| 17 | | hashcl 13147 |
. . . . . . . . . 10
⊢ (𝐹 ∈ Fin →
(#‘𝐹) ∈
ℕ0) |
| 18 | 5, 16, 17 | 3syl 18 |
. . . . . . . . 9
⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+)
→ (#‘𝐹) ∈
ℕ0) |
| 19 | 18 | nn0cnd 11353 |
. . . . . . . 8
⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+)
→ (#‘𝐹) ∈
ℂ) |
| 20 | 15, 19 | addcomd 10238 |
. . . . . . 7
⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+)
→ (1 + (#‘𝐹)) =
((#‘𝐹) +
1)) |
| 21 | 14, 20 | eqtrd 2656 |
. . . . . 6
⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+)
→ (#‘(〈“0”〉 ++ 𝐹)) = ((#‘𝐹) + 1)) |
| 22 | 21 | oveq2d 6666 |
. . . . 5
⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+)
→ (0..^(#‘(〈“0”〉 ++ 𝐹))) = (0..^((#‘𝐹) + 1))) |
| 23 | 22 | feq2d 6031 |
. . . 4
⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+)
→ ((〈“0”〉 ++ 𝐹):(0..^(#‘(〈“0”〉
++ 𝐹)))⟶ℝ
↔ (〈“0”〉 ++ 𝐹):(0..^((#‘𝐹) + 1))⟶ℝ)) |
| 24 | 9, 23 | mpbid 222 |
. . 3
⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+)
→ (〈“0”〉 ++ 𝐹):(0..^((#‘𝐹) + 1))⟶ℝ) |
| 25 | | remulcl 10021 |
. . . . 5
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ) |
| 26 | 25 | adantl 482 |
. . . 4
⊢ (((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+)
∧ (𝑥 ∈ ℝ
∧ 𝑦 ∈ ℝ))
→ (𝑥 · 𝑦) ∈
ℝ) |
| 27 | | ccatcl 13359 |
. . . . . . 7
⊢ ((𝐹 ∈ Word ℝ ∧
〈“0”〉 ∈ Word ℝ) → (𝐹 ++ 〈“0”〉) ∈ Word
ℝ) |
| 28 | 4, 27 | syldan 487 |
. . . . . 6
⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+)
→ (𝐹 ++
〈“0”〉) ∈ Word ℝ) |
| 29 | | wrdf 13310 |
. . . . . 6
⊢ ((𝐹 ++ 〈“0”〉)
∈ Word ℝ → (𝐹 ++
〈“0”〉):(0..^(#‘(𝐹 ++
〈“0”〉)))⟶ℝ) |
| 30 | 28, 29 | syl 17 |
. . . . 5
⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+)
→ (𝐹 ++
〈“0”〉):(0..^(#‘(𝐹 ++
〈“0”〉)))⟶ℝ) |
| 31 | | ccatlen 13360 |
. . . . . . . . 9
⊢ ((𝐹 ∈ Word ℝ ∧
〈“0”〉 ∈ Word ℝ) → (#‘(𝐹 ++
〈“0”〉)) = ((#‘𝐹) +
(#‘〈“0”〉))) |
| 32 | 4, 31 | syldan 487 |
. . . . . . . 8
⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+)
→ (#‘(𝐹 ++
〈“0”〉)) = ((#‘𝐹) +
(#‘〈“0”〉))) |
| 33 | 12 | oveq2i 6661 |
. . . . . . . 8
⊢
((#‘𝐹) +
(#‘〈“0”〉)) = ((#‘𝐹) + 1) |
| 34 | 32, 33 | syl6eq 2672 |
. . . . . . 7
⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+)
→ (#‘(𝐹 ++
〈“0”〉)) = ((#‘𝐹) + 1)) |
| 35 | 34 | oveq2d 6666 |
. . . . . 6
⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+)
→ (0..^(#‘(𝐹 ++
〈“0”〉))) = (0..^((#‘𝐹) + 1))) |
| 36 | 35 | feq2d 6031 |
. . . . 5
⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+)
→ ((𝐹 ++
〈“0”〉):(0..^(#‘(𝐹 ++
〈“0”〉)))⟶ℝ ↔ (𝐹 ++
〈“0”〉):(0..^((#‘𝐹) + 1))⟶ℝ)) |
| 37 | 30, 36 | mpbid 222 |
. . . 4
⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+)
→ (𝐹 ++
〈“0”〉):(0..^((#‘𝐹) + 1))⟶ℝ) |
| 38 | | ovexd 6680 |
. . . 4
⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+)
→ (0..^((#‘𝐹) +
1)) ∈ V) |
| 39 | | simpr 477 |
. . . . 5
⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+)
→ 𝐶 ∈
ℝ+) |
| 40 | 39 | rpred 11872 |
. . . 4
⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+)
→ 𝐶 ∈
ℝ) |
| 41 | 26, 37, 38, 40 | ofcf 30165 |
. . 3
⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+)
→ ((𝐹 ++
〈“0”〉)∘𝑓/𝑐 ·
𝐶):(0..^((#‘𝐹) +
1))⟶ℝ) |
| 42 | | inidm 3822 |
. . 3
⊢
((0..^((#‘𝐹) +
1)) ∩ (0..^((#‘𝐹)
+ 1))) = (0..^((#‘𝐹)
+ 1)) |
| 43 | 2, 24, 41, 38, 38, 42 | off 6912 |
. 2
⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+)
→ ((〈“0”〉 ++ 𝐹) ∘𝑓 −
((𝐹 ++
〈“0”〉)∘𝑓/𝑐 ·
𝐶)):(0..^((#‘𝐹) +
1))⟶ℝ) |
| 44 | | signs.h |
. . 3
⊢ 𝐻 = ((〈“0”〉
++ 𝐹)
∘𝑓 − ((𝐹 ++
〈“0”〉)∘𝑓/𝑐 ·
𝐶)) |
| 45 | 44 | feq1i 6036 |
. 2
⊢ (𝐻:(0..^((#‘𝐹) + 1))⟶ℝ ↔
((〈“0”〉 ++ 𝐹) ∘𝑓 −
((𝐹 ++
〈“0”〉)∘𝑓/𝑐 ·
𝐶)):(0..^((#‘𝐹) +
1))⟶ℝ) |
| 46 | 43, 45 | sylibr 224 |
1
⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+)
→ 𝐻:(0..^((#‘𝐹) + 1))⟶ℝ) |