Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signshf Structured version   Visualization version   Unicode version

Theorem signshf 30665
Description:  H, corresponding to the word  F multiplied by  ( x  -  C ), as a function. (Contributed by Thierry Arnoux, 29-Sep-2018.)
Hypotheses
Ref Expression
signsv.p  |-  .+^  =  ( a  e.  { -u
1 ,  0 ,  1 } ,  b  e.  { -u 1 ,  0 ,  1 }  |->  if ( b  =  0 ,  a ,  b ) )
signsv.w  |-  W  =  { <. ( Base `  ndx ) ,  { -u 1 ,  0 ,  1 } >. ,  <. ( +g  `  ndx ) , 
.+^  >. }
signsv.t  |-  T  =  ( f  e. Word  RR  |->  ( n  e.  (
0..^ ( # `  f
) )  |->  ( W 
gsumg  ( i  e.  ( 0 ... n ) 
|->  (sgn `  ( f `  i ) ) ) ) ) )
signsv.v  |-  V  =  ( f  e. Word  RR  |->  sum_ j  e.  ( 1..^ ( # `  f
) ) if ( ( ( T `  f ) `  j
)  =/=  ( ( T `  f ) `
 ( j  - 
1 ) ) ,  1 ,  0 ) )
signs.h  |-  H  =  ( ( <" 0 "> ++  F )  oF  -  ( ( F ++  <" 0 "> )𝑓/𝑐  x.  C ) )
Assertion
Ref Expression
signshf  |-  ( ( F  e. Word  RR  /\  C  e.  RR+ )  ->  H : ( 0..^ ( ( # `  F
)  +  1 ) ) --> RR )
Distinct variable groups:    a, b,  .+^    f, i, n, F    f, W, i, n
Allowed substitution hints:    C( f, i, j, n, a, b)    .+^ ( f, i, j, n)    T( f, i, j, n, a, b)    F( j, a, b)    H( f, i, j, n, a, b)    V( f, i, j, n, a, b)    W( j, a, b)

Proof of Theorem signshf
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resubcl 10345 . . . 4  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  -  y
)  e.  RR )
21adantl 482 . . 3  |-  ( ( ( F  e. Word  RR  /\  C  e.  RR+ )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  ( x  -  y )  e.  RR )
3 0red 10041 . . . . . . 7  |-  ( ( F  e. Word  RR  /\  C  e.  RR+ )  -> 
0  e.  RR )
43s1cld 13383 . . . . . 6  |-  ( ( F  e. Word  RR  /\  C  e.  RR+ )  ->  <" 0 ">  e. Word  RR )
5 simpl 473 . . . . . 6  |-  ( ( F  e. Word  RR  /\  C  e.  RR+ )  ->  F  e. Word  RR )
6 ccatcl 13359 . . . . . 6  |-  ( (
<" 0 ">  e. Word  RR  /\  F  e. Word  RR )  ->  ( <" 0 "> ++  F )  e. Word  RR )
74, 5, 6syl2anc 693 . . . . 5  |-  ( ( F  e. Word  RR  /\  C  e.  RR+ )  -> 
( <" 0 "> ++  F )  e. Word  RR )
8 wrdf 13310 . . . . 5  |-  ( (
<" 0 "> ++  F )  e. Word  RR  ->  (
<" 0 "> ++  F ) : ( 0..^ ( # `  ( <" 0 "> ++  F ) ) ) --> RR )
97, 8syl 17 . . . 4  |-  ( ( F  e. Word  RR  /\  C  e.  RR+ )  -> 
( <" 0 "> ++  F ) : ( 0..^ ( # `  ( <" 0 "> ++  F ) ) ) --> RR )
10 ccatlen 13360 . . . . . . . . 9  |-  ( (
<" 0 ">  e. Word  RR  /\  F  e. Word  RR )  ->  ( # `  ( <" 0 "> ++  F ) )  =  ( ( # `  <" 0 "> )  +  (
# `  F )
) )
114, 5, 10syl2anc 693 . . . . . . . 8  |-  ( ( F  e. Word  RR  /\  C  e.  RR+ )  -> 
( # `  ( <" 0 "> ++  F ) )  =  ( ( # `  <" 0 "> )  +  ( # `  F
) ) )
12 s1len 13385 . . . . . . . . 9  |-  ( # `  <" 0 "> )  =  1
1312oveq1i 6660 . . . . . . . 8  |-  ( (
# `  <" 0 "> )  +  (
# `  F )
)  =  ( 1  +  ( # `  F
) )
1411, 13syl6eq 2672 . . . . . . 7  |-  ( ( F  e. Word  RR  /\  C  e.  RR+ )  -> 
( # `  ( <" 0 "> ++  F ) )  =  ( 1  +  ( # `  F ) ) )
15 1cnd 10056 . . . . . . . 8  |-  ( ( F  e. Word  RR  /\  C  e.  RR+ )  -> 
1  e.  CC )
16 wrdfin 13323 . . . . . . . . . 10  |-  ( F  e. Word  RR  ->  F  e. 
Fin )
17 hashcl 13147 . . . . . . . . . 10  |-  ( F  e.  Fin  ->  ( # `
 F )  e. 
NN0 )
185, 16, 173syl 18 . . . . . . . . 9  |-  ( ( F  e. Word  RR  /\  C  e.  RR+ )  -> 
( # `  F )  e.  NN0 )
1918nn0cnd 11353 . . . . . . . 8  |-  ( ( F  e. Word  RR  /\  C  e.  RR+ )  -> 
( # `  F )  e.  CC )
2015, 19addcomd 10238 . . . . . . 7  |-  ( ( F  e. Word  RR  /\  C  e.  RR+ )  -> 
( 1  +  (
# `  F )
)  =  ( (
# `  F )  +  1 ) )
2114, 20eqtrd 2656 . . . . . 6  |-  ( ( F  e. Word  RR  /\  C  e.  RR+ )  -> 
( # `  ( <" 0 "> ++  F ) )  =  ( ( # `  F
)  +  1 ) )
2221oveq2d 6666 . . . . 5  |-  ( ( F  e. Word  RR  /\  C  e.  RR+ )  -> 
( 0..^ ( # `  ( <" 0 "> ++  F ) ) )  =  ( 0..^ ( ( # `  F
)  +  1 ) ) )
2322feq2d 6031 . . . 4  |-  ( ( F  e. Word  RR  /\  C  e.  RR+ )  -> 
( ( <" 0 "> ++  F ) : ( 0..^ ( # `  ( <" 0 "> ++  F ) ) ) --> RR  <->  ( <" 0 "> ++  F ) : ( 0..^ ( ( # `  F
)  +  1 ) ) --> RR ) )
249, 23mpbid 222 . . 3  |-  ( ( F  e. Word  RR  /\  C  e.  RR+ )  -> 
( <" 0 "> ++  F ) : ( 0..^ ( (
# `  F )  +  1 ) ) --> RR )
25 remulcl 10021 . . . . 5  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  x.  y
)  e.  RR )
2625adantl 482 . . . 4  |-  ( ( ( F  e. Word  RR  /\  C  e.  RR+ )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  ( x  x.  y )  e.  RR )
27 ccatcl 13359 . . . . . . 7  |-  ( ( F  e. Word  RR  /\  <" 0 ">  e. Word  RR )  ->  ( F ++  <" 0 "> )  e. Word  RR )
284, 27syldan 487 . . . . . 6  |-  ( ( F  e. Word  RR  /\  C  e.  RR+ )  -> 
( F ++  <" 0 "> )  e. Word  RR )
29 wrdf 13310 . . . . . 6  |-  ( ( F ++  <" 0 "> )  e. Word  RR  ->  ( F ++  <" 0 "> ) : ( 0..^ ( # `  ( F ++  <" 0 "> ) ) ) --> RR )
3028, 29syl 17 . . . . 5  |-  ( ( F  e. Word  RR  /\  C  e.  RR+ )  -> 
( F ++  <" 0 "> ) : ( 0..^ ( # `  ( F ++  <" 0 "> ) ) ) --> RR )
31 ccatlen 13360 . . . . . . . . 9  |-  ( ( F  e. Word  RR  /\  <" 0 ">  e. Word  RR )  ->  ( # `
 ( F ++  <" 0 "> )
)  =  ( (
# `  F )  +  ( # `  <" 0 "> )
) )
324, 31syldan 487 . . . . . . . 8  |-  ( ( F  e. Word  RR  /\  C  e.  RR+ )  -> 
( # `  ( F ++ 
<" 0 "> ) )  =  ( ( # `  F
)  +  ( # `  <" 0 "> ) ) )
3312oveq2i 6661 . . . . . . . 8  |-  ( (
# `  F )  +  ( # `  <" 0 "> )
)  =  ( (
# `  F )  +  1 )
3432, 33syl6eq 2672 . . . . . . 7  |-  ( ( F  e. Word  RR  /\  C  e.  RR+ )  -> 
( # `  ( F ++ 
<" 0 "> ) )  =  ( ( # `  F
)  +  1 ) )
3534oveq2d 6666 . . . . . 6  |-  ( ( F  e. Word  RR  /\  C  e.  RR+ )  -> 
( 0..^ ( # `  ( F ++  <" 0 "> ) ) )  =  ( 0..^ ( ( # `  F
)  +  1 ) ) )
3635feq2d 6031 . . . . 5  |-  ( ( F  e. Word  RR  /\  C  e.  RR+ )  -> 
( ( F ++  <" 0 "> ) : ( 0..^ (
# `  ( F ++  <" 0 "> ) ) ) --> RR  <->  ( F ++  <" 0 "> ) : ( 0..^ ( ( # `  F )  +  1 ) ) --> RR ) )
3730, 36mpbid 222 . . . 4  |-  ( ( F  e. Word  RR  /\  C  e.  RR+ )  -> 
( F ++  <" 0 "> ) : ( 0..^ ( ( # `  F )  +  1 ) ) --> RR )
38 ovexd 6680 . . . 4  |-  ( ( F  e. Word  RR  /\  C  e.  RR+ )  -> 
( 0..^ ( (
# `  F )  +  1 ) )  e.  _V )
39 simpr 477 . . . . 5  |-  ( ( F  e. Word  RR  /\  C  e.  RR+ )  ->  C  e.  RR+ )
4039rpred 11872 . . . 4  |-  ( ( F  e. Word  RR  /\  C  e.  RR+ )  ->  C  e.  RR )
4126, 37, 38, 40ofcf 30165 . . 3  |-  ( ( F  e. Word  RR  /\  C  e.  RR+ )  -> 
( ( F ++  <" 0 "> )𝑓/𝑐  x.  C
) : ( 0..^ ( ( # `  F
)  +  1 ) ) --> RR )
42 inidm 3822 . . 3  |-  ( ( 0..^ ( ( # `  F )  +  1 ) )  i^i  (
0..^ ( ( # `  F )  +  1 ) ) )  =  ( 0..^ ( (
# `  F )  +  1 ) )
432, 24, 41, 38, 38, 42off 6912 . 2  |-  ( ( F  e. Word  RR  /\  C  e.  RR+ )  -> 
( ( <" 0 "> ++  F )  oF  -  ( ( F ++  <" 0 "> )𝑓/𝑐  x.  C ) ) : ( 0..^ ( (
# `  F )  +  1 ) ) --> RR )
44 signs.h . . 3  |-  H  =  ( ( <" 0 "> ++  F )  oF  -  ( ( F ++  <" 0 "> )𝑓/𝑐  x.  C ) )
4544feq1i 6036 . 2  |-  ( H : ( 0..^ ( ( # `  F
)  +  1 ) ) --> RR  <->  ( ( <" 0 "> ++  F )  oF  -  ( ( F ++  <" 0 "> )𝑓/𝑐  x.  C
) ) : ( 0..^ ( ( # `  F )  +  1 ) ) --> RR )
4643, 45sylibr 224 1  |-  ( ( F  e. Word  RR  /\  C  e.  RR+ )  ->  H : ( 0..^ ( ( # `  F
)  +  1 ) ) --> RR )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200   ifcif 4086   {cpr 4179   {ctp 4181   <.cop 4183    |-> cmpt 4729   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652    oFcof 6895   Fincfn 7955   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    - cmin 10266   -ucneg 10267   NN0cn0 11292   RR+crp 11832   ...cfz 12326  ..^cfzo 12465   #chash 13117  Word cword 13291   ++ cconcat 13293   <"cs1 13294  sgncsgn 13826   sum_csu 14416   ndxcnx 15854   Basecbs 15857   +g cplusg 15941    gsumg cgsu 16101  ∘𝑓/𝑐cofc 30157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-ofc 30158
This theorem is referenced by:  signshwrd  30666  signshlen  30667
  Copyright terms: Public domain W3C validator