![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > signshlen | Structured version Visualization version GIF version |
Description: Length of 𝐻, corresponding to the word 𝐹 multiplied by (𝑥 − 𝐶). (Contributed by Thierry Arnoux, 14-Oct-2018.) |
Ref | Expression |
---|---|
signsv.p | ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) |
signsv.w | ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} |
signsv.t | ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(#‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) |
signsv.v | ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(#‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) |
signs.h | ⊢ 𝐻 = ((〈“0”〉 ++ 𝐹) ∘𝑓 − ((𝐹 ++ 〈“0”〉)∘𝑓/𝑐 · 𝐶)) |
Ref | Expression |
---|---|
signshlen | ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → (#‘𝐻) = ((#‘𝐹) + 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | signsv.p | . . . 4 ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) | |
2 | signsv.w | . . . 4 ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} | |
3 | signsv.t | . . . 4 ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(#‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) | |
4 | signsv.v | . . . 4 ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(#‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) | |
5 | signs.h | . . . 4 ⊢ 𝐻 = ((〈“0”〉 ++ 𝐹) ∘𝑓 − ((𝐹 ++ 〈“0”〉)∘𝑓/𝑐 · 𝐶)) | |
6 | 1, 2, 3, 4, 5 | signshf 30665 | . . 3 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → 𝐻:(0..^((#‘𝐹) + 1))⟶ℝ) |
7 | ffn 6045 | . . 3 ⊢ (𝐻:(0..^((#‘𝐹) + 1))⟶ℝ → 𝐻 Fn (0..^((#‘𝐹) + 1))) | |
8 | hashfn 13164 | . . 3 ⊢ (𝐻 Fn (0..^((#‘𝐹) + 1)) → (#‘𝐻) = (#‘(0..^((#‘𝐹) + 1)))) | |
9 | 6, 7, 8 | 3syl 18 | . 2 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → (#‘𝐻) = (#‘(0..^((#‘𝐹) + 1)))) |
10 | lencl 13324 | . . . . 5 ⊢ (𝐹 ∈ Word ℝ → (#‘𝐹) ∈ ℕ0) | |
11 | 10 | adantr 481 | . . . 4 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → (#‘𝐹) ∈ ℕ0) |
12 | 1nn0 11308 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
13 | 12 | a1i 11 | . . . 4 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → 1 ∈ ℕ0) |
14 | 11, 13 | nn0addcld 11355 | . . 3 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → ((#‘𝐹) + 1) ∈ ℕ0) |
15 | hashfzo0 13217 | . . 3 ⊢ (((#‘𝐹) + 1) ∈ ℕ0 → (#‘(0..^((#‘𝐹) + 1))) = ((#‘𝐹) + 1)) | |
16 | 14, 15 | syl 17 | . 2 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → (#‘(0..^((#‘𝐹) + 1))) = ((#‘𝐹) + 1)) |
17 | 9, 16 | eqtrd 2656 | 1 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → (#‘𝐻) = ((#‘𝐹) + 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 ifcif 4086 {cpr 4179 {ctp 4181 〈cop 4183 ↦ cmpt 4729 Fn wfn 5883 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 ↦ cmpt2 6652 ∘𝑓 cof 6895 ℝcr 9935 0cc0 9936 1c1 9937 + caddc 9939 · cmul 9941 − cmin 10266 -cneg 10267 ℕ0cn0 11292 ℝ+crp 11832 ...cfz 12326 ..^cfzo 12465 #chash 13117 Word cword 13291 ++ cconcat 13293 〈“cs1 13294 sgncsgn 13826 Σcsu 14416 ndxcnx 15854 Basecbs 15857 +gcplusg 15941 Σg cgsu 16101 ∘𝑓/𝑐cofc 30157 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-fz 12327 df-fzo 12466 df-hash 13118 df-word 13299 df-concat 13301 df-s1 13302 df-ofc 30158 |
This theorem is referenced by: signshnz 30668 |
Copyright terms: Public domain | W3C validator |