MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdco Structured version   Visualization version   GIF version

Theorem swrdco 13583
Description: Mapping of words commutes with the substring operation. (Contributed by AV, 11-Nov-2018.)
Assertion
Ref Expression
swrdco ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝑊))) ∧ 𝐹:𝐴𝐵) → (𝐹 ∘ (𝑊 substr ⟨𝑀, 𝑁⟩)) = ((𝐹𝑊) substr ⟨𝑀, 𝑁⟩))

Proof of Theorem swrdco
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 ffn 6045 . . . 4 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
213ad2ant3 1084 . . 3 ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝑊))) ∧ 𝐹:𝐴𝐵) → 𝐹 Fn 𝐴)
3 swrdvalfn 13426 . . . . 5 ((𝑊 ∈ Word 𝐴𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝑊))) → (𝑊 substr ⟨𝑀, 𝑁⟩) Fn (0..^(𝑁𝑀)))
433expb 1266 . . . 4 ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝑊)))) → (𝑊 substr ⟨𝑀, 𝑁⟩) Fn (0..^(𝑁𝑀)))
543adant3 1081 . . 3 ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝑊))) ∧ 𝐹:𝐴𝐵) → (𝑊 substr ⟨𝑀, 𝑁⟩) Fn (0..^(𝑁𝑀)))
6 swrdrn 13429 . . . . 5 ((𝑊 ∈ Word 𝐴𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝑊))) → ran (𝑊 substr ⟨𝑀, 𝑁⟩) ⊆ 𝐴)
763expb 1266 . . . 4 ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝑊)))) → ran (𝑊 substr ⟨𝑀, 𝑁⟩) ⊆ 𝐴)
873adant3 1081 . . 3 ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝑊))) ∧ 𝐹:𝐴𝐵) → ran (𝑊 substr ⟨𝑀, 𝑁⟩) ⊆ 𝐴)
9 fnco 5999 . . 3 ((𝐹 Fn 𝐴 ∧ (𝑊 substr ⟨𝑀, 𝑁⟩) Fn (0..^(𝑁𝑀)) ∧ ran (𝑊 substr ⟨𝑀, 𝑁⟩) ⊆ 𝐴) → (𝐹 ∘ (𝑊 substr ⟨𝑀, 𝑁⟩)) Fn (0..^(𝑁𝑀)))
102, 5, 8, 9syl3anc 1326 . 2 ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝑊))) ∧ 𝐹:𝐴𝐵) → (𝐹 ∘ (𝑊 substr ⟨𝑀, 𝑁⟩)) Fn (0..^(𝑁𝑀)))
11 wrdco 13577 . . . 4 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝐹𝑊) ∈ Word 𝐵)
12113adant2 1080 . . 3 ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝑊))) ∧ 𝐹:𝐴𝐵) → (𝐹𝑊) ∈ Word 𝐵)
13 simp2l 1087 . . 3 ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝑊))) ∧ 𝐹:𝐴𝐵) → 𝑀 ∈ (0...𝑁))
14 lenco 13578 . . . . . . . . . . . 12 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (#‘(𝐹𝑊)) = (#‘𝑊))
1514eqcomd 2628 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (#‘𝑊) = (#‘(𝐹𝑊)))
1615oveq2d 6666 . . . . . . . . . 10 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (0...(#‘𝑊)) = (0...(#‘(𝐹𝑊))))
1716eleq2d 2687 . . . . . . . . 9 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝑁 ∈ (0...(#‘𝑊)) ↔ 𝑁 ∈ (0...(#‘(𝐹𝑊)))))
1817biimpd 219 . . . . . . . 8 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝑁 ∈ (0...(#‘𝑊)) → 𝑁 ∈ (0...(#‘(𝐹𝑊)))))
1918expcom 451 . . . . . . 7 (𝐹:𝐴𝐵 → (𝑊 ∈ Word 𝐴 → (𝑁 ∈ (0...(#‘𝑊)) → 𝑁 ∈ (0...(#‘(𝐹𝑊))))))
2019com13 88 . . . . . 6 (𝑁 ∈ (0...(#‘𝑊)) → (𝑊 ∈ Word 𝐴 → (𝐹:𝐴𝐵𝑁 ∈ (0...(#‘(𝐹𝑊))))))
2120adantl 482 . . . . 5 ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝑊))) → (𝑊 ∈ Word 𝐴 → (𝐹:𝐴𝐵𝑁 ∈ (0...(#‘(𝐹𝑊))))))
2221com12 32 . . . 4 (𝑊 ∈ Word 𝐴 → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝑊))) → (𝐹:𝐴𝐵𝑁 ∈ (0...(#‘(𝐹𝑊))))))
23223imp 1256 . . 3 ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝑊))) ∧ 𝐹:𝐴𝐵) → 𝑁 ∈ (0...(#‘(𝐹𝑊))))
24 swrdvalfn 13426 . . 3 (((𝐹𝑊) ∈ Word 𝐵𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘(𝐹𝑊)))) → ((𝐹𝑊) substr ⟨𝑀, 𝑁⟩) Fn (0..^(𝑁𝑀)))
2512, 13, 23, 24syl3anc 1326 . 2 ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝑊))) ∧ 𝐹:𝐴𝐵) → ((𝐹𝑊) substr ⟨𝑀, 𝑁⟩) Fn (0..^(𝑁𝑀)))
26 3anass 1042 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝑊))) ↔ (𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝑊)))))
2726biimpri 218 . . . . . 6 ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝑊)))) → (𝑊 ∈ Word 𝐴𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝑊))))
28273adant3 1081 . . . . 5 ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝑊))) ∧ 𝐹:𝐴𝐵) → (𝑊 ∈ Word 𝐴𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝑊))))
29 swrdfv 13424 . . . . . 6 (((𝑊 ∈ Word 𝐴𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝑊))) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = (𝑊‘(𝑖 + 𝑀)))
3029fveq2d 6195 . . . . 5 (((𝑊 ∈ Word 𝐴𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝑊))) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → (𝐹‘((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖)) = (𝐹‘(𝑊‘(𝑖 + 𝑀))))
3128, 30sylan 488 . . . 4 (((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝑊))) ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → (𝐹‘((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖)) = (𝐹‘(𝑊‘(𝑖 + 𝑀))))
32 wrdfn 13319 . . . . . . 7 (𝑊 ∈ Word 𝐴𝑊 Fn (0..^(#‘𝑊)))
33323ad2ant1 1082 . . . . . 6 ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝑊))) ∧ 𝐹:𝐴𝐵) → 𝑊 Fn (0..^(#‘𝑊)))
3433adantr 481 . . . . 5 (((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝑊))) ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → 𝑊 Fn (0..^(#‘𝑊)))
35 elfzodifsumelfzo 12533 . . . . . . 7 ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝑊))) → (𝑖 ∈ (0..^(𝑁𝑀)) → (𝑖 + 𝑀) ∈ (0..^(#‘𝑊))))
36353ad2ant2 1083 . . . . . 6 ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝑊))) ∧ 𝐹:𝐴𝐵) → (𝑖 ∈ (0..^(𝑁𝑀)) → (𝑖 + 𝑀) ∈ (0..^(#‘𝑊))))
3736imp 445 . . . . 5 (((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝑊))) ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → (𝑖 + 𝑀) ∈ (0..^(#‘𝑊)))
38 fvco2 6273 . . . . 5 ((𝑊 Fn (0..^(#‘𝑊)) ∧ (𝑖 + 𝑀) ∈ (0..^(#‘𝑊))) → ((𝐹𝑊)‘(𝑖 + 𝑀)) = (𝐹‘(𝑊‘(𝑖 + 𝑀))))
3934, 37, 38syl2anc 693 . . . 4 (((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝑊))) ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → ((𝐹𝑊)‘(𝑖 + 𝑀)) = (𝐹‘(𝑊‘(𝑖 + 𝑀))))
4031, 39eqtr4d 2659 . . 3 (((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝑊))) ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → (𝐹‘((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖)) = ((𝐹𝑊)‘(𝑖 + 𝑀)))
41 fvco2 6273 . . . 4 (((𝑊 substr ⟨𝑀, 𝑁⟩) Fn (0..^(𝑁𝑀)) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → ((𝐹 ∘ (𝑊 substr ⟨𝑀, 𝑁⟩))‘𝑖) = (𝐹‘((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖)))
425, 41sylan 488 . . 3 (((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝑊))) ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → ((𝐹 ∘ (𝑊 substr ⟨𝑀, 𝑁⟩))‘𝑖) = (𝐹‘((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖)))
4314ancoms 469 . . . . . . . . . . . . . 14 ((𝐹:𝐴𝐵𝑊 ∈ Word 𝐴) → (#‘(𝐹𝑊)) = (#‘𝑊))
4443eqcomd 2628 . . . . . . . . . . . . 13 ((𝐹:𝐴𝐵𝑊 ∈ Word 𝐴) → (#‘𝑊) = (#‘(𝐹𝑊)))
4544oveq2d 6666 . . . . . . . . . . . 12 ((𝐹:𝐴𝐵𝑊 ∈ Word 𝐴) → (0...(#‘𝑊)) = (0...(#‘(𝐹𝑊))))
4645eleq2d 2687 . . . . . . . . . . 11 ((𝐹:𝐴𝐵𝑊 ∈ Word 𝐴) → (𝑁 ∈ (0...(#‘𝑊)) ↔ 𝑁 ∈ (0...(#‘(𝐹𝑊)))))
4746biimpd 219 . . . . . . . . . 10 ((𝐹:𝐴𝐵𝑊 ∈ Word 𝐴) → (𝑁 ∈ (0...(#‘𝑊)) → 𝑁 ∈ (0...(#‘(𝐹𝑊)))))
4847ex 450 . . . . . . . . 9 (𝐹:𝐴𝐵 → (𝑊 ∈ Word 𝐴 → (𝑁 ∈ (0...(#‘𝑊)) → 𝑁 ∈ (0...(#‘(𝐹𝑊))))))
4948com13 88 . . . . . . . 8 (𝑁 ∈ (0...(#‘𝑊)) → (𝑊 ∈ Word 𝐴 → (𝐹:𝐴𝐵𝑁 ∈ (0...(#‘(𝐹𝑊))))))
5049adantl 482 . . . . . . 7 ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝑊))) → (𝑊 ∈ Word 𝐴 → (𝐹:𝐴𝐵𝑁 ∈ (0...(#‘(𝐹𝑊))))))
5150com12 32 . . . . . 6 (𝑊 ∈ Word 𝐴 → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝑊))) → (𝐹:𝐴𝐵𝑁 ∈ (0...(#‘(𝐹𝑊))))))
52513imp 1256 . . . . 5 ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝑊))) ∧ 𝐹:𝐴𝐵) → 𝑁 ∈ (0...(#‘(𝐹𝑊))))
5312, 13, 523jca 1242 . . . 4 ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝑊))) ∧ 𝐹:𝐴𝐵) → ((𝐹𝑊) ∈ Word 𝐵𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘(𝐹𝑊)))))
54 swrdfv 13424 . . . 4 ((((𝐹𝑊) ∈ Word 𝐵𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘(𝐹𝑊)))) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → (((𝐹𝑊) substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝐹𝑊)‘(𝑖 + 𝑀)))
5553, 54sylan 488 . . 3 (((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝑊))) ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → (((𝐹𝑊) substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝐹𝑊)‘(𝑖 + 𝑀)))
5640, 42, 553eqtr4d 2666 . 2 (((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝑊))) ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → ((𝐹 ∘ (𝑊 substr ⟨𝑀, 𝑁⟩))‘𝑖) = (((𝐹𝑊) substr ⟨𝑀, 𝑁⟩)‘𝑖))
5710, 25, 56eqfnfvd 6314 1 ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝑊))) ∧ 𝐹:𝐴𝐵) → (𝐹 ∘ (𝑊 substr ⟨𝑀, 𝑁⟩)) = ((𝐹𝑊) substr ⟨𝑀, 𝑁⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wss 3574  cop 4183  ran crn 5115  ccom 5118   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  0cc0 9936   + caddc 9939  cmin 10266  ...cfz 12326  ..^cfzo 12465  #chash 13117  Word cword 13291   substr csubstr 13295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-substr 13303
This theorem is referenced by:  pfxco  41438
  Copyright terms: Public domain W3C validator