MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icopnfcld Structured version   Visualization version   GIF version

Theorem icopnfcld 22571
Description: Right-unbounded closed intervals are closed sets of the standard topology on . (Contributed by Mario Carneiro, 17-Feb-2015.)
Assertion
Ref Expression
icopnfcld (𝐴 ∈ ℝ → (𝐴[,)+∞) ∈ (Clsd‘(topGen‘ran (,))))

Proof of Theorem icopnfcld
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mnfxr 10096 . . . . . 6 -∞ ∈ ℝ*
21a1i 11 . . . . 5 (𝐴 ∈ ℝ → -∞ ∈ ℝ*)
3 rexr 10085 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
4 pnfxr 10092 . . . . . 6 +∞ ∈ ℝ*
54a1i 11 . . . . 5 (𝐴 ∈ ℝ → +∞ ∈ ℝ*)
6 mnflt 11957 . . . . 5 (𝐴 ∈ ℝ → -∞ < 𝐴)
7 ltpnf 11954 . . . . 5 (𝐴 ∈ ℝ → 𝐴 < +∞)
8 df-ioo 12179 . . . . . 6 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
9 df-ico 12181 . . . . . 6 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
10 xrlenlt 10103 . . . . . 6 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴𝑤 ↔ ¬ 𝑤 < 𝐴))
11 xrlttr 11973 . . . . . 6 ((𝑤 ∈ ℝ*𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝑤 < 𝐴𝐴 < +∞) → 𝑤 < +∞))
12 xrltletr 11988 . . . . . 6 ((-∞ ∈ ℝ*𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → ((-∞ < 𝐴𝐴𝑤) → -∞ < 𝑤))
138, 9, 10, 8, 11, 12ixxun 12191 . . . . 5 (((-∞ ∈ ℝ*𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ < 𝐴𝐴 < +∞)) → ((-∞(,)𝐴) ∪ (𝐴[,)+∞)) = (-∞(,)+∞))
142, 3, 5, 6, 7, 13syl32anc 1334 . . . 4 (𝐴 ∈ ℝ → ((-∞(,)𝐴) ∪ (𝐴[,)+∞)) = (-∞(,)+∞))
15 ioomax 12248 . . . 4 (-∞(,)+∞) = ℝ
1614, 15syl6eq 2672 . . 3 (𝐴 ∈ ℝ → ((-∞(,)𝐴) ∪ (𝐴[,)+∞)) = ℝ)
17 ioossre 12235 . . . 4 (-∞(,)𝐴) ⊆ ℝ
188, 9, 10ixxdisj 12190 . . . . 5 ((-∞ ∈ ℝ*𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((-∞(,)𝐴) ∩ (𝐴[,)+∞)) = ∅)
192, 3, 5, 18syl3anc 1326 . . . 4 (𝐴 ∈ ℝ → ((-∞(,)𝐴) ∩ (𝐴[,)+∞)) = ∅)
20 uneqdifeq 4057 . . . 4 (((-∞(,)𝐴) ⊆ ℝ ∧ ((-∞(,)𝐴) ∩ (𝐴[,)+∞)) = ∅) → (((-∞(,)𝐴) ∪ (𝐴[,)+∞)) = ℝ ↔ (ℝ ∖ (-∞(,)𝐴)) = (𝐴[,)+∞)))
2117, 19, 20sylancr 695 . . 3 (𝐴 ∈ ℝ → (((-∞(,)𝐴) ∪ (𝐴[,)+∞)) = ℝ ↔ (ℝ ∖ (-∞(,)𝐴)) = (𝐴[,)+∞)))
2216, 21mpbid 222 . 2 (𝐴 ∈ ℝ → (ℝ ∖ (-∞(,)𝐴)) = (𝐴[,)+∞))
23 retop 22565 . . 3 (topGen‘ran (,)) ∈ Top
24 iooretop 22569 . . 3 (-∞(,)𝐴) ∈ (topGen‘ran (,))
25 uniretop 22566 . . . 4 ℝ = (topGen‘ran (,))
2625opncld 20837 . . 3 (((topGen‘ran (,)) ∈ Top ∧ (-∞(,)𝐴) ∈ (topGen‘ran (,))) → (ℝ ∖ (-∞(,)𝐴)) ∈ (Clsd‘(topGen‘ran (,))))
2723, 24, 26mp2an 708 . 2 (ℝ ∖ (-∞(,)𝐴)) ∈ (Clsd‘(topGen‘ran (,)))
2822, 27syl6eqelr 2710 1 (𝐴 ∈ ℝ → (𝐴[,)+∞) ∈ (Clsd‘(topGen‘ran (,))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1483  wcel 1990  cdif 3571  cun 3572  cin 3573  wss 3574  c0 3915   class class class wbr 4653  ran crn 5115  cfv 5888  (class class class)co 6650  cr 9935  +∞cpnf 10071  -∞cmnf 10072  *cxr 10073   < clt 10074  cle 10075  (,)cioo 12175  [,)cico 12177  topGenctg 16098  Topctop 20698  Clsdccld 20820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-ioo 12179  df-ico 12181  df-topgen 16104  df-top 20699  df-bases 20750  df-cld 20823
This theorem is referenced by:  sxbrsigalem3  30334  orvcgteel  30529  dvasin  33496  dvacos  33497  dvreasin  33498  dvreacos  33499  rfcnpre3  39192
  Copyright terms: Public domain W3C validator