![]() |
Mathbox for David A. Wheeler |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sinhpcosh | Structured version Visualization version GIF version |
Description: Prove that (sinh‘𝐴) + (cosh‘𝐴) = (exp‘𝐴) using the conventional hyperbolic trigonometric functions. (Contributed by David A. Wheeler, 27-May-2015.) |
Ref | Expression |
---|---|
sinhpcosh | ⊢ (𝐴 ∈ ℂ → ((sinh‘𝐴) + (cosh‘𝐴)) = (exp‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sinhval-named 42477 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (sinh‘𝐴) = ((sin‘(i · 𝐴)) / i)) | |
2 | sinhval 14884 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((sin‘(i · 𝐴)) / i) = (((exp‘𝐴) − (exp‘-𝐴)) / 2)) | |
3 | 1, 2 | eqtrd 2656 | . . . 4 ⊢ (𝐴 ∈ ℂ → (sinh‘𝐴) = (((exp‘𝐴) − (exp‘-𝐴)) / 2)) |
4 | coshval-named 42478 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (cosh‘𝐴) = (cos‘(i · 𝐴))) | |
5 | coshval 14885 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (cos‘(i · 𝐴)) = (((exp‘𝐴) + (exp‘-𝐴)) / 2)) | |
6 | 4, 5 | eqtrd 2656 | . . . 4 ⊢ (𝐴 ∈ ℂ → (cosh‘𝐴) = (((exp‘𝐴) + (exp‘-𝐴)) / 2)) |
7 | 3, 6 | oveq12d 6668 | . . 3 ⊢ (𝐴 ∈ ℂ → ((sinh‘𝐴) + (cosh‘𝐴)) = ((((exp‘𝐴) − (exp‘-𝐴)) / 2) + (((exp‘𝐴) + (exp‘-𝐴)) / 2))) |
8 | 2cn 11091 | . . . 4 ⊢ 2 ∈ ℂ | |
9 | 2ne0 11113 | . . . 4 ⊢ 2 ≠ 0 | |
10 | efcl 14813 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) ∈ ℂ) | |
11 | negcl 10281 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) | |
12 | efcl 14813 | . . . . . . . 8 ⊢ (-𝐴 ∈ ℂ → (exp‘-𝐴) ∈ ℂ) | |
13 | 11, 12 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (exp‘-𝐴) ∈ ℂ) |
14 | 10, 13 | addcld 10059 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → ((exp‘𝐴) + (exp‘-𝐴)) ∈ ℂ) |
15 | 10, 13 | subcld 10392 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → ((exp‘𝐴) − (exp‘-𝐴)) ∈ ℂ) |
16 | divdir 10710 | . . . . . . 7 ⊢ ((((exp‘𝐴) − (exp‘-𝐴)) ∈ ℂ ∧ ((exp‘𝐴) + (exp‘-𝐴)) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((((exp‘𝐴) − (exp‘-𝐴)) + ((exp‘𝐴) + (exp‘-𝐴))) / 2) = ((((exp‘𝐴) − (exp‘-𝐴)) / 2) + (((exp‘𝐴) + (exp‘-𝐴)) / 2))) | |
17 | 15, 16 | syl3an1 1359 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ ((exp‘𝐴) + (exp‘-𝐴)) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((((exp‘𝐴) − (exp‘-𝐴)) + ((exp‘𝐴) + (exp‘-𝐴))) / 2) = ((((exp‘𝐴) − (exp‘-𝐴)) / 2) + (((exp‘𝐴) + (exp‘-𝐴)) / 2))) |
18 | 14, 17 | syl3an2 1360 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((((exp‘𝐴) − (exp‘-𝐴)) + ((exp‘𝐴) + (exp‘-𝐴))) / 2) = ((((exp‘𝐴) − (exp‘-𝐴)) / 2) + (((exp‘𝐴) + (exp‘-𝐴)) / 2))) |
19 | 18 | 3anidm12 1383 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((((exp‘𝐴) − (exp‘-𝐴)) + ((exp‘𝐴) + (exp‘-𝐴))) / 2) = ((((exp‘𝐴) − (exp‘-𝐴)) / 2) + (((exp‘𝐴) + (exp‘-𝐴)) / 2))) |
20 | 8, 9, 19 | mpanr12 721 | . . 3 ⊢ (𝐴 ∈ ℂ → ((((exp‘𝐴) − (exp‘-𝐴)) + ((exp‘𝐴) + (exp‘-𝐴))) / 2) = ((((exp‘𝐴) − (exp‘-𝐴)) / 2) + (((exp‘𝐴) + (exp‘-𝐴)) / 2))) |
21 | 10 | 2timesd 11275 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (2 · (exp‘𝐴)) = ((exp‘𝐴) + (exp‘𝐴))) |
22 | 10, 13, 10 | nppcand 10417 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((((exp‘𝐴) − (exp‘-𝐴)) + (exp‘𝐴)) + (exp‘-𝐴)) = ((exp‘𝐴) + (exp‘𝐴))) |
23 | 15, 10, 13 | addassd 10062 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((((exp‘𝐴) − (exp‘-𝐴)) + (exp‘𝐴)) + (exp‘-𝐴)) = (((exp‘𝐴) − (exp‘-𝐴)) + ((exp‘𝐴) + (exp‘-𝐴)))) |
24 | 21, 22, 23 | 3eqtr2rd 2663 | . . . 4 ⊢ (𝐴 ∈ ℂ → (((exp‘𝐴) − (exp‘-𝐴)) + ((exp‘𝐴) + (exp‘-𝐴))) = (2 · (exp‘𝐴))) |
25 | 24 | oveq1d 6665 | . . 3 ⊢ (𝐴 ∈ ℂ → ((((exp‘𝐴) − (exp‘-𝐴)) + ((exp‘𝐴) + (exp‘-𝐴))) / 2) = ((2 · (exp‘𝐴)) / 2)) |
26 | 7, 20, 25 | 3eqtr2d 2662 | . 2 ⊢ (𝐴 ∈ ℂ → ((sinh‘𝐴) + (cosh‘𝐴)) = ((2 · (exp‘𝐴)) / 2)) |
27 | 8 | a1i 11 | . . 3 ⊢ (𝐴 ∈ ℂ → 2 ∈ ℂ) |
28 | 9 | a1i 11 | . . 3 ⊢ (𝐴 ∈ ℂ → 2 ≠ 0) |
29 | 10, 27, 28 | divcan3d 10806 | . 2 ⊢ (𝐴 ∈ ℂ → ((2 · (exp‘𝐴)) / 2) = (exp‘𝐴)) |
30 | 26, 29 | eqtrd 2656 | 1 ⊢ (𝐴 ∈ ℂ → ((sinh‘𝐴) + (cosh‘𝐴)) = (exp‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 ‘cfv 5888 (class class class)co 6650 ℂcc 9934 0cc0 9936 ici 9938 + caddc 9939 · cmul 9941 − cmin 10266 -cneg 10267 / cdiv 10684 2c2 11070 expce 14792 sincsin 14794 cosccos 14795 sinhcsinh 42471 coshccosh 42472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 ax-addf 10015 ax-mulf 10016 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-pm 7860 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-oi 8415 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-ico 12181 df-fz 12327 df-fzo 12466 df-fl 12593 df-seq 12802 df-exp 12861 df-fac 13061 df-hash 13118 df-shft 13807 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-limsup 14202 df-clim 14219 df-rlim 14220 df-sum 14417 df-ef 14798 df-sin 14800 df-cos 14801 df-sinh 42474 df-cosh 42475 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |