MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cayhamlem1 Structured version   Visualization version   GIF version

Theorem cayhamlem1 20671
Description: Lemma 1 for cayleyhamilton 20695. (Contributed by AV, 11-Nov-2019.)
Hypotheses
Ref Expression
cayhamlem1.a 𝐴 = (𝑁 Mat 𝑅)
cayhamlem1.b 𝐵 = (Base‘𝐴)
cayhamlem1.p 𝑃 = (Poly1𝑅)
cayhamlem1.y 𝑌 = (𝑁 Mat 𝑃)
cayhamlem1.r × = (.r𝑌)
cayhamlem1.s = (-g𝑌)
cayhamlem1.0 0 = (0g𝑌)
cayhamlem1.t 𝑇 = (𝑁 matToPolyMat 𝑅)
cayhamlem1.g 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
cayhamlem1.e = (.g‘(mulGrp‘𝑌))
Assertion
Ref Expression
cayhamlem1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 (𝑇𝑀)) × (𝐺𝑖)))) = 0 )
Distinct variable groups:   𝐵,𝑛   𝑛,𝑀   𝑛,𝑁   𝑅,𝑛   𝑛,𝑌   𝑛,𝑏   𝑛,𝑠   0 ,𝑛   𝐵,𝑖   𝑖,𝐺   𝑖,𝑀   𝑖,𝑁   𝑅,𝑖   𝑇,𝑖   × ,𝑖   ,𝑖   𝑖,𝑠   𝑖,𝑏   𝑇,𝑛,𝑖   𝑖,𝑌   × ,𝑛   ,𝑛,𝑖
Allowed substitution hints:   𝐴(𝑖,𝑛,𝑠,𝑏)   𝐵(𝑠,𝑏)   𝑃(𝑖,𝑛,𝑠,𝑏)   𝑅(𝑠,𝑏)   𝑇(𝑠,𝑏)   × (𝑠,𝑏)   (𝑛,𝑠,𝑏)   𝐺(𝑛,𝑠,𝑏)   𝑀(𝑠,𝑏)   (𝑠,𝑏)   𝑁(𝑠,𝑏)   𝑌(𝑠,𝑏)   0 (𝑖,𝑠,𝑏)

Proof of Theorem cayhamlem1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 cayhamlem1.a . . 3 𝐴 = (𝑁 Mat 𝑅)
2 cayhamlem1.b . . 3 𝐵 = (Base‘𝐴)
3 cayhamlem1.p . . 3 𝑃 = (Poly1𝑅)
4 cayhamlem1.y . . 3 𝑌 = (𝑁 Mat 𝑃)
5 cayhamlem1.r . . 3 × = (.r𝑌)
6 cayhamlem1.s . . 3 = (-g𝑌)
7 cayhamlem1.0 . . 3 0 = (0g𝑌)
8 cayhamlem1.t . . 3 𝑇 = (𝑁 matToPolyMat 𝑅)
9 cayhamlem1.g . . 3 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
10 cayhamlem1.e . . 3 = (.g‘(mulGrp‘𝑌))
11 eqid 2622 . . 3 (+g𝑌) = (+g𝑌)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11chfacfpmmulgsum2 20670 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 (𝑇𝑀)) × (𝐺𝑖)))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))) (((𝑖 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑖))))))(+g𝑌)((((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
13 elfzelz 12342 . . . . . . . . . . . . . . 15 (𝑖 ∈ (1...𝑠) → 𝑖 ∈ ℤ)
1413zcnd 11483 . . . . . . . . . . . . . 14 (𝑖 ∈ (1...𝑠) → 𝑖 ∈ ℂ)
15 pncan1 10454 . . . . . . . . . . . . . 14 (𝑖 ∈ ℂ → ((𝑖 + 1) − 1) = 𝑖)
1614, 15syl 17 . . . . . . . . . . . . 13 (𝑖 ∈ (1...𝑠) → ((𝑖 + 1) − 1) = 𝑖)
1716eqcomd 2628 . . . . . . . . . . . 12 (𝑖 ∈ (1...𝑠) → 𝑖 = ((𝑖 + 1) − 1))
1817adantl 482 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑖 ∈ (1...𝑠)) → 𝑖 = ((𝑖 + 1) − 1))
1918fveq2d 6195 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑖 ∈ (1...𝑠)) → (𝑏𝑖) = (𝑏‘((𝑖 + 1) − 1)))
2019fveq2d 6195 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑖 ∈ (1...𝑠)) → (𝑇‘(𝑏𝑖)) = (𝑇‘(𝑏‘((𝑖 + 1) − 1))))
2120oveq2d 6666 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑖 ∈ (1...𝑠)) → (((𝑖 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑖))) = (((𝑖 + 1) (𝑇𝑀)) × (𝑇‘(𝑏‘((𝑖 + 1) − 1)))))
2221oveq2d 6666 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑖 ∈ (1...𝑠)) → (((𝑖 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))) (((𝑖 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑖)))) = (((𝑖 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))) (((𝑖 + 1) (𝑇𝑀)) × (𝑇‘(𝑏‘((𝑖 + 1) − 1))))))
2322mpteq2dva 4744 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑖 ∈ (1...𝑠) ↦ (((𝑖 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))) (((𝑖 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑖))))) = (𝑖 ∈ (1...𝑠) ↦ (((𝑖 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))) (((𝑖 + 1) (𝑇𝑀)) × (𝑇‘(𝑏‘((𝑖 + 1) − 1)))))))
2423oveq2d 6666 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))) (((𝑖 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑖)))))) = (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))) (((𝑖 + 1) (𝑇𝑀)) × (𝑇‘(𝑏‘((𝑖 + 1) − 1))))))))
2524adantr 481 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))) (((𝑖 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑖)))))) = (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))) (((𝑖 + 1) (𝑇𝑀)) × (𝑇‘(𝑏‘((𝑖 + 1) − 1))))))))
26 eqid 2622 . . . . 5 (Base‘𝑌) = (Base‘𝑌)
27 crngring 18558 . . . . . . . . . 10 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2827anim2i 593 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
29283adant3 1081 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
303, 4pmatring 20498 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑌 ∈ Ring)
3129, 30syl 17 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ Ring)
32 ringabl 18580 . . . . . . 7 (𝑌 ∈ Ring → 𝑌 ∈ Abel)
3331, 32syl 17 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ Abel)
3433adantr 481 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → 𝑌 ∈ Abel)
35 elnnuz 11724 . . . . . . 7 (𝑠 ∈ ℕ ↔ 𝑠 ∈ (ℤ‘1))
3635biimpi 206 . . . . . 6 (𝑠 ∈ ℕ → 𝑠 ∈ (ℤ‘1))
3736ad2antrl 764 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → 𝑠 ∈ (ℤ‘1))
3831adantr 481 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → 𝑌 ∈ Ring)
3938adantr 481 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑘 ∈ (1...(𝑠 + 1))) → 𝑌 ∈ Ring)
4028, 30syl 17 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ Ring)
41403adant3 1081 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ Ring)
42 eqid 2622 . . . . . . . . . . . . 13 (mulGrp‘𝑌) = (mulGrp‘𝑌)
4342ringmgp 18553 . . . . . . . . . . . 12 (𝑌 ∈ Ring → (mulGrp‘𝑌) ∈ Mnd)
4441, 43syl 17 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (mulGrp‘𝑌) ∈ Mnd)
4544adantr 481 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → (mulGrp‘𝑌) ∈ Mnd)
4645adantr 481 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑘 ∈ (1...(𝑠 + 1))) → (mulGrp‘𝑌) ∈ Mnd)
47 mndmgm 17300 . . . . . . . . 9 ((mulGrp‘𝑌) ∈ Mnd → (mulGrp‘𝑌) ∈ Mgm)
4846, 47syl 17 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑘 ∈ (1...(𝑠 + 1))) → (mulGrp‘𝑌) ∈ Mgm)
49 elfznn 12370 . . . . . . . . 9 (𝑘 ∈ (1...(𝑠 + 1)) → 𝑘 ∈ ℕ)
5049adantl 482 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑘 ∈ (1...(𝑠 + 1))) → 𝑘 ∈ ℕ)
518, 1, 2, 3, 4mat2pmatbas 20531 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑇𝑀) ∈ (Base‘𝑌))
5227, 51syl3an2 1360 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑇𝑀) ∈ (Base‘𝑌))
5352adantr 481 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → (𝑇𝑀) ∈ (Base‘𝑌))
5453adantr 481 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑘 ∈ (1...(𝑠 + 1))) → (𝑇𝑀) ∈ (Base‘𝑌))
5542, 26mgpbas 18495 . . . . . . . . 9 (Base‘𝑌) = (Base‘(mulGrp‘𝑌))
5655, 10mulgnncl 17556 . . . . . . . 8 (((mulGrp‘𝑌) ∈ Mgm ∧ 𝑘 ∈ ℕ ∧ (𝑇𝑀) ∈ (Base‘𝑌)) → (𝑘 (𝑇𝑀)) ∈ (Base‘𝑌))
5748, 50, 54, 56syl3anc 1326 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑘 ∈ (1...(𝑠 + 1))) → (𝑘 (𝑇𝑀)) ∈ (Base‘𝑌))
58 simpl1 1064 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → 𝑁 ∈ Fin)
5958adantr 481 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑘 ∈ (1...(𝑠 + 1))) → 𝑁 ∈ Fin)
60273ad2ant2 1083 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑅 ∈ Ring)
6160adantr 481 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → 𝑅 ∈ Ring)
6261adantr 481 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑘 ∈ (1...(𝑠 + 1))) → 𝑅 ∈ Ring)
63 elmapi 7879 . . . . . . . . . . . 12 (𝑏 ∈ (𝐵𝑚 (0...𝑠)) → 𝑏:(0...𝑠)⟶𝐵)
6463adantl 482 . . . . . . . . . . 11 ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) → 𝑏:(0...𝑠)⟶𝐵)
6564adantl 482 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → 𝑏:(0...𝑠)⟶𝐵)
6665adantr 481 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑘 ∈ (1...(𝑠 + 1))) → 𝑏:(0...𝑠)⟶𝐵)
67 nnz 11399 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
68 peano2nn 11032 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ℕ → (𝑠 + 1) ∈ ℕ)
6968nnzd 11481 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ℕ → (𝑠 + 1) ∈ ℤ)
70 elfzm1b 12418 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℤ ∧ (𝑠 + 1) ∈ ℤ) → (𝑘 ∈ (1...(𝑠 + 1)) ↔ (𝑘 − 1) ∈ (0...((𝑠 + 1) − 1))))
7167, 69, 70syl2an 494 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ ∧ 𝑠 ∈ ℕ) → (𝑘 ∈ (1...(𝑠 + 1)) ↔ (𝑘 − 1) ∈ (0...((𝑠 + 1) − 1))))
72 nncn 11028 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℕ → 𝑠 ∈ ℂ)
73 pncan1 10454 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℂ → ((𝑠 + 1) − 1) = 𝑠)
7472, 73syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ ℕ → ((𝑠 + 1) − 1) = 𝑠)
7574adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℕ ∧ 𝑠 ∈ ℕ) → ((𝑠 + 1) − 1) = 𝑠)
7675oveq2d 6666 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℕ ∧ 𝑠 ∈ ℕ) → (0...((𝑠 + 1) − 1)) = (0...𝑠))
7776eleq2d 2687 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℕ ∧ 𝑠 ∈ ℕ) → ((𝑘 − 1) ∈ (0...((𝑠 + 1) − 1)) ↔ (𝑘 − 1) ∈ (0...𝑠)))
7877biimpd 219 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ ∧ 𝑠 ∈ ℕ) → ((𝑘 − 1) ∈ (0...((𝑠 + 1) − 1)) → (𝑘 − 1) ∈ (0...𝑠)))
7971, 78sylbid 230 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℕ ∧ 𝑠 ∈ ℕ) → (𝑘 ∈ (1...(𝑠 + 1)) → (𝑘 − 1) ∈ (0...𝑠)))
8079expcom 451 . . . . . . . . . . . . . 14 (𝑠 ∈ ℕ → (𝑘 ∈ ℕ → (𝑘 ∈ (1...(𝑠 + 1)) → (𝑘 − 1) ∈ (0...𝑠))))
8180com13 88 . . . . . . . . . . . . 13 (𝑘 ∈ (1...(𝑠 + 1)) → (𝑘 ∈ ℕ → (𝑠 ∈ ℕ → (𝑘 − 1) ∈ (0...𝑠))))
8249, 81mpd 15 . . . . . . . . . . . 12 (𝑘 ∈ (1...(𝑠 + 1)) → (𝑠 ∈ ℕ → (𝑘 − 1) ∈ (0...𝑠)))
8382com12 32 . . . . . . . . . . 11 (𝑠 ∈ ℕ → (𝑘 ∈ (1...(𝑠 + 1)) → (𝑘 − 1) ∈ (0...𝑠)))
8483ad2antrl 764 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → (𝑘 ∈ (1...(𝑠 + 1)) → (𝑘 − 1) ∈ (0...𝑠)))
8584imp 445 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑘 ∈ (1...(𝑠 + 1))) → (𝑘 − 1) ∈ (0...𝑠))
8666, 85ffvelrnd 6360 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑘 ∈ (1...(𝑠 + 1))) → (𝑏‘(𝑘 − 1)) ∈ 𝐵)
878, 1, 2, 3, 4mat2pmatbas 20531 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏‘(𝑘 − 1)) ∈ 𝐵) → (𝑇‘(𝑏‘(𝑘 − 1))) ∈ (Base‘𝑌))
8859, 62, 86, 87syl3anc 1326 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑘 ∈ (1...(𝑠 + 1))) → (𝑇‘(𝑏‘(𝑘 − 1))) ∈ (Base‘𝑌))
8926, 5ringcl 18561 . . . . . . 7 ((𝑌 ∈ Ring ∧ (𝑘 (𝑇𝑀)) ∈ (Base‘𝑌) ∧ (𝑇‘(𝑏‘(𝑘 − 1))) ∈ (Base‘𝑌)) → ((𝑘 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑘 − 1)))) ∈ (Base‘𝑌))
9039, 57, 88, 89syl3anc 1326 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑘 ∈ (1...(𝑠 + 1))) → ((𝑘 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑘 − 1)))) ∈ (Base‘𝑌))
9190ralrimiva 2966 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → ∀𝑘 ∈ (1...(𝑠 + 1))((𝑘 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑘 − 1)))) ∈ (Base‘𝑌))
92 oveq1 6657 . . . . . 6 (𝑘 = 𝑖 → (𝑘 (𝑇𝑀)) = (𝑖 (𝑇𝑀)))
93 oveq1 6657 . . . . . . . 8 (𝑘 = 𝑖 → (𝑘 − 1) = (𝑖 − 1))
9493fveq2d 6195 . . . . . . 7 (𝑘 = 𝑖 → (𝑏‘(𝑘 − 1)) = (𝑏‘(𝑖 − 1)))
9594fveq2d 6195 . . . . . 6 (𝑘 = 𝑖 → (𝑇‘(𝑏‘(𝑘 − 1))) = (𝑇‘(𝑏‘(𝑖 − 1))))
9692, 95oveq12d 6668 . . . . 5 (𝑘 = 𝑖 → ((𝑘 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑘 − 1)))) = ((𝑖 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))))
97 oveq1 6657 . . . . . 6 (𝑘 = (𝑖 + 1) → (𝑘 (𝑇𝑀)) = ((𝑖 + 1) (𝑇𝑀)))
98 oveq1 6657 . . . . . . . 8 (𝑘 = (𝑖 + 1) → (𝑘 − 1) = ((𝑖 + 1) − 1))
9998fveq2d 6195 . . . . . . 7 (𝑘 = (𝑖 + 1) → (𝑏‘(𝑘 − 1)) = (𝑏‘((𝑖 + 1) − 1)))
10099fveq2d 6195 . . . . . 6 (𝑘 = (𝑖 + 1) → (𝑇‘(𝑏‘(𝑘 − 1))) = (𝑇‘(𝑏‘((𝑖 + 1) − 1))))
10197, 100oveq12d 6668 . . . . 5 (𝑘 = (𝑖 + 1) → ((𝑘 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑘 − 1)))) = (((𝑖 + 1) (𝑇𝑀)) × (𝑇‘(𝑏‘((𝑖 + 1) − 1)))))
102 oveq1 6657 . . . . . 6 (𝑘 = 1 → (𝑘 (𝑇𝑀)) = (1 (𝑇𝑀)))
103 oveq1 6657 . . . . . . . 8 (𝑘 = 1 → (𝑘 − 1) = (1 − 1))
104103fveq2d 6195 . . . . . . 7 (𝑘 = 1 → (𝑏‘(𝑘 − 1)) = (𝑏‘(1 − 1)))
105104fveq2d 6195 . . . . . 6 (𝑘 = 1 → (𝑇‘(𝑏‘(𝑘 − 1))) = (𝑇‘(𝑏‘(1 − 1))))
106102, 105oveq12d 6668 . . . . 5 (𝑘 = 1 → ((𝑘 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑘 − 1)))) = ((1 (𝑇𝑀)) × (𝑇‘(𝑏‘(1 − 1)))))
107 oveq1 6657 . . . . . 6 (𝑘 = (𝑠 + 1) → (𝑘 (𝑇𝑀)) = ((𝑠 + 1) (𝑇𝑀)))
108 oveq1 6657 . . . . . . . 8 (𝑘 = (𝑠 + 1) → (𝑘 − 1) = ((𝑠 + 1) − 1))
109108fveq2d 6195 . . . . . . 7 (𝑘 = (𝑠 + 1) → (𝑏‘(𝑘 − 1)) = (𝑏‘((𝑠 + 1) − 1)))
110109fveq2d 6195 . . . . . 6 (𝑘 = (𝑠 + 1) → (𝑇‘(𝑏‘(𝑘 − 1))) = (𝑇‘(𝑏‘((𝑠 + 1) − 1))))
111107, 110oveq12d 6668 . . . . 5 (𝑘 = (𝑠 + 1) → ((𝑘 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑘 − 1)))) = (((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏‘((𝑠 + 1) − 1)))))
11226, 34, 6, 37, 91, 96, 101, 106, 111telgsumfz 18387 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))) (((𝑖 + 1) (𝑇𝑀)) × (𝑇‘(𝑏‘((𝑖 + 1) − 1))))))) = (((1 (𝑇𝑀)) × (𝑇‘(𝑏‘(1 − 1)))) (((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏‘((𝑠 + 1) − 1))))))
11325, 112eqtrd 2656 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))) (((𝑖 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑖)))))) = (((1 (𝑇𝑀)) × (𝑇‘(𝑏‘(1 − 1)))) (((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏‘((𝑠 + 1) − 1))))))
114113oveq1d 6665 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))) (((𝑖 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑖))))))(+g𝑌)((((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))) = ((((1 (𝑇𝑀)) × (𝑇‘(𝑏‘(1 − 1)))) (((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏‘((𝑠 + 1) − 1)))))(+g𝑌)((((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
11555, 10mulg1 17548 . . . . . . . 8 ((𝑇𝑀) ∈ (Base‘𝑌) → (1 (𝑇𝑀)) = (𝑇𝑀))
11652, 115syl 17 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (1 (𝑇𝑀)) = (𝑇𝑀))
117116adantr 481 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → (1 (𝑇𝑀)) = (𝑇𝑀))
118 1cnd 10056 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → 1 ∈ ℂ)
119118subidd 10380 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → (1 − 1) = 0)
120119fveq2d 6195 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → (𝑏‘(1 − 1)) = (𝑏‘0))
121120fveq2d 6195 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → (𝑇‘(𝑏‘(1 − 1))) = (𝑇‘(𝑏‘0)))
122117, 121oveq12d 6668 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → ((1 (𝑇𝑀)) × (𝑇‘(𝑏‘(1 − 1)))) = ((𝑇𝑀) × (𝑇‘(𝑏‘0))))
12372ad2antrl 764 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → 𝑠 ∈ ℂ)
124123, 118pncand 10393 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → ((𝑠 + 1) − 1) = 𝑠)
125124fveq2d 6195 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → (𝑏‘((𝑠 + 1) − 1)) = (𝑏𝑠))
126125fveq2d 6195 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → (𝑇‘(𝑏‘((𝑠 + 1) − 1))) = (𝑇‘(𝑏𝑠)))
127126oveq2d 6666 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → (((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏‘((𝑠 + 1) − 1)))) = (((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑠))))
128122, 127oveq12d 6668 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → (((1 (𝑇𝑀)) × (𝑇‘(𝑏‘(1 − 1)))) (((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏‘((𝑠 + 1) − 1))))) = (((𝑇𝑀) × (𝑇‘(𝑏‘0))) (((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑠)))))
129128oveq1d 6665 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → ((((1 (𝑇𝑀)) × (𝑇‘(𝑏‘(1 − 1)))) (((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏‘((𝑠 + 1) − 1)))))(+g𝑌)((((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))) = ((((𝑇𝑀) × (𝑇‘(𝑏‘0))) (((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑠))))(+g𝑌)((((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
130 ringgrp 18552 . . . . . 6 (𝑌 ∈ Ring → 𝑌 ∈ Grp)
13131, 130syl 17 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ Grp)
132131adantr 481 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → 𝑌 ∈ Grp)
133 nnnn0 11299 . . . . . . . . 9 (𝑠 ∈ ℕ → 𝑠 ∈ ℕ0)
134 0elfz 12436 . . . . . . . . 9 (𝑠 ∈ ℕ0 → 0 ∈ (0...𝑠))
135133, 134syl 17 . . . . . . . 8 (𝑠 ∈ ℕ → 0 ∈ (0...𝑠))
136135ad2antrl 764 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → 0 ∈ (0...𝑠))
13765, 136ffvelrnd 6360 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → (𝑏‘0) ∈ 𝐵)
1388, 1, 2, 3, 4mat2pmatbas 20531 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏‘0) ∈ 𝐵) → (𝑇‘(𝑏‘0)) ∈ (Base‘𝑌))
13958, 61, 137, 138syl3anc 1326 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → (𝑇‘(𝑏‘0)) ∈ (Base‘𝑌))
14026, 5ringcl 18561 . . . . 5 ((𝑌 ∈ Ring ∧ (𝑇𝑀) ∈ (Base‘𝑌) ∧ (𝑇‘(𝑏‘0)) ∈ (Base‘𝑌)) → ((𝑇𝑀) × (𝑇‘(𝑏‘0))) ∈ (Base‘𝑌))
14138, 53, 139, 140syl3anc 1326 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → ((𝑇𝑀) × (𝑇‘(𝑏‘0))) ∈ (Base‘𝑌))
14245, 47syl 17 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → (mulGrp‘𝑌) ∈ Mgm)
143 simprl 794 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → 𝑠 ∈ ℕ)
144143peano2nnd 11037 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → (𝑠 + 1) ∈ ℕ)
14555, 10mulgnncl 17556 . . . . . 6 (((mulGrp‘𝑌) ∈ Mgm ∧ (𝑠 + 1) ∈ ℕ ∧ (𝑇𝑀) ∈ (Base‘𝑌)) → ((𝑠 + 1) (𝑇𝑀)) ∈ (Base‘𝑌))
146142, 144, 53, 145syl3anc 1326 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → ((𝑠 + 1) (𝑇𝑀)) ∈ (Base‘𝑌))
147 nn0fz0 12437 . . . . . . . . 9 (𝑠 ∈ ℕ0𝑠 ∈ (0...𝑠))
148133, 147sylib 208 . . . . . . . 8 (𝑠 ∈ ℕ → 𝑠 ∈ (0...𝑠))
149148ad2antrl 764 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → 𝑠 ∈ (0...𝑠))
15065, 149ffvelrnd 6360 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → (𝑏𝑠) ∈ 𝐵)
1518, 1, 2, 3, 4mat2pmatbas 20531 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏𝑠) ∈ 𝐵) → (𝑇‘(𝑏𝑠)) ∈ (Base‘𝑌))
15258, 61, 150, 151syl3anc 1326 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → (𝑇‘(𝑏𝑠)) ∈ (Base‘𝑌))
15326, 5ringcl 18561 . . . . 5 ((𝑌 ∈ Ring ∧ ((𝑠 + 1) (𝑇𝑀)) ∈ (Base‘𝑌) ∧ (𝑇‘(𝑏𝑠)) ∈ (Base‘𝑌)) → (((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑠))) ∈ (Base‘𝑌))
15438, 146, 152, 153syl3anc 1326 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → (((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑠))) ∈ (Base‘𝑌))
15526, 11, 6, 7grpnpncan0 17511 . . . 4 ((𝑌 ∈ Grp ∧ (((𝑇𝑀) × (𝑇‘(𝑏‘0))) ∈ (Base‘𝑌) ∧ (((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑠))) ∈ (Base‘𝑌))) → ((((𝑇𝑀) × (𝑇‘(𝑏‘0))) (((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑠))))(+g𝑌)((((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))) = 0 )
156132, 141, 154, 155syl12anc 1324 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → ((((𝑇𝑀) × (𝑇‘(𝑏‘0))) (((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑠))))(+g𝑌)((((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))) = 0 )
157129, 156eqtrd 2656 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → ((((1 (𝑇𝑀)) × (𝑇‘(𝑏‘(1 − 1)))) (((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏‘((𝑠 + 1) − 1)))))(+g𝑌)((((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))) = 0 )
15812, 114, 1573eqtrd 2660 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 (𝑇𝑀)) × (𝐺𝑖)))) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  ifcif 4086   class class class wbr 4653  cmpt 4729  wf 5884  cfv 5888  (class class class)co 6650  𝑚 cmap 7857  Fincfn 7955  cc 9934  0cc0 9936  1c1 9937   + caddc 9939   < clt 10074  cmin 10266  cn 11020  0cn0 11292  cz 11377  cuz 11687  ...cfz 12326  Basecbs 15857  +gcplusg 15941  .rcmulr 15942  0gc0g 16100   Σg cgsu 16101  Mgmcmgm 17240  Mndcmnd 17294  Grpcgrp 17422  -gcsg 17424  .gcmg 17540  Abelcabl 18194  mulGrpcmgp 18489  Ringcrg 18547  CRingccrg 18548  Poly1cpl1 19547   Mat cmat 20213   matToPolyMat cmat2pmat 20509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-0g 16102  df-gsum 16103  df-prds 16108  df-pws 16110  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-subrg 18778  df-lmod 18865  df-lss 18933  df-sra 19172  df-rgmod 19173  df-ascl 19314  df-psr 19356  df-mpl 19358  df-opsr 19360  df-psr1 19550  df-ply1 19552  df-dsmm 20076  df-frlm 20091  df-mamu 20190  df-mat 20214  df-mat2pmat 20512
This theorem is referenced by:  cayleyhamilton0  20694  cayleyhamiltonALT  20696
  Copyright terms: Public domain W3C validator