MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symg1bas Structured version   Visualization version   GIF version

Theorem symg1bas 17816
Description: The symmetric group on a singleton is the symmetric group S1 consisting of the identity only. (Contributed by AV, 9-Dec-2018.)
Hypotheses
Ref Expression
symg1bas.1 𝐺 = (SymGrp‘𝐴)
symg1bas.2 𝐵 = (Base‘𝐺)
symg1bas.0 𝐴 = {𝐼}
Assertion
Ref Expression
symg1bas (𝐼𝑉𝐵 = {{⟨𝐼, 𝐼⟩}})

Proof of Theorem symg1bas
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 symg1bas.1 . . 3 𝐺 = (SymGrp‘𝐴)
2 symg1bas.2 . . 3 𝐵 = (Base‘𝐺)
31, 2symgbas 17800 . 2 𝐵 = {𝑓𝑓:𝐴1-1-onto𝐴}
4 symg1bas.0 . . . . . 6 𝐴 = {𝐼}
5 eqidd 2623 . . . . . . 7 (𝐴 = {𝐼} → 𝑝 = 𝑝)
6 id 22 . . . . . . 7 (𝐴 = {𝐼} → 𝐴 = {𝐼})
75, 6, 6f1oeq123d 6133 . . . . . 6 (𝐴 = {𝐼} → (𝑝:𝐴1-1-onto𝐴𝑝:{𝐼}–1-1-onto→{𝐼}))
84, 7ax-mp 5 . . . . 5 (𝑝:𝐴1-1-onto𝐴𝑝:{𝐼}–1-1-onto→{𝐼})
9 f1of 6137 . . . . . . 7 (𝑝:{𝐼}–1-1-onto→{𝐼} → 𝑝:{𝐼}⟶{𝐼})
10 fsng 6404 . . . . . . . 8 ((𝐼𝑉𝐼𝑉) → (𝑝:{𝐼}⟶{𝐼} ↔ 𝑝 = {⟨𝐼, 𝐼⟩}))
1110anidms 677 . . . . . . 7 (𝐼𝑉 → (𝑝:{𝐼}⟶{𝐼} ↔ 𝑝 = {⟨𝐼, 𝐼⟩}))
129, 11syl5ib 234 . . . . . 6 (𝐼𝑉 → (𝑝:{𝐼}–1-1-onto→{𝐼} → 𝑝 = {⟨𝐼, 𝐼⟩}))
13 f1osng 6177 . . . . . . . 8 ((𝐼𝑉𝐼𝑉) → {⟨𝐼, 𝐼⟩}:{𝐼}–1-1-onto→{𝐼})
1413anidms 677 . . . . . . 7 (𝐼𝑉 → {⟨𝐼, 𝐼⟩}:{𝐼}–1-1-onto→{𝐼})
15 f1oeq1 6127 . . . . . . 7 (𝑝 = {⟨𝐼, 𝐼⟩} → (𝑝:{𝐼}–1-1-onto→{𝐼} ↔ {⟨𝐼, 𝐼⟩}:{𝐼}–1-1-onto→{𝐼}))
1614, 15syl5ibrcom 237 . . . . . 6 (𝐼𝑉 → (𝑝 = {⟨𝐼, 𝐼⟩} → 𝑝:{𝐼}–1-1-onto→{𝐼}))
1712, 16impbid 202 . . . . 5 (𝐼𝑉 → (𝑝:{𝐼}–1-1-onto→{𝐼} ↔ 𝑝 = {⟨𝐼, 𝐼⟩}))
188, 17syl5bb 272 . . . 4 (𝐼𝑉 → (𝑝:𝐴1-1-onto𝐴𝑝 = {⟨𝐼, 𝐼⟩}))
19 vex 3203 . . . . 5 𝑝 ∈ V
20 f1oeq1 6127 . . . . 5 (𝑓 = 𝑝 → (𝑓:𝐴1-1-onto𝐴𝑝:𝐴1-1-onto𝐴))
2119, 20elab 3350 . . . 4 (𝑝 ∈ {𝑓𝑓:𝐴1-1-onto𝐴} ↔ 𝑝:𝐴1-1-onto𝐴)
22 velsn 4193 . . . 4 (𝑝 ∈ {{⟨𝐼, 𝐼⟩}} ↔ 𝑝 = {⟨𝐼, 𝐼⟩})
2318, 21, 223bitr4g 303 . . 3 (𝐼𝑉 → (𝑝 ∈ {𝑓𝑓:𝐴1-1-onto𝐴} ↔ 𝑝 ∈ {{⟨𝐼, 𝐼⟩}}))
2423eqrdv 2620 . 2 (𝐼𝑉 → {𝑓𝑓:𝐴1-1-onto𝐴} = {{⟨𝐼, 𝐼⟩}})
253, 24syl5eq 2668 1 (𝐼𝑉𝐵 = {{⟨𝐼, 𝐼⟩}})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1483  wcel 1990  {cab 2608  {csn 4177  cop 4183  wf 5884  1-1-ontowf1o 5887  cfv 5888  Basecbs 15857  SymGrpcsymg 17797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-tset 15960  df-symg 17798
This theorem is referenced by:  symg2bas  17818  psgnsn  17940  m1detdiag  20403
  Copyright terms: Public domain W3C validator