| Step | Hyp | Ref
| Expression |
| 1 | | symgext.s |
. . 3
⊢ 𝑆 =
(Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) |
| 2 | | symgext.e |
. . 3
⊢ 𝐸 = (𝑥 ∈ 𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥))) |
| 3 | 1, 2 | symgextf 17837 |
. 2
⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → 𝐸:𝑁⟶𝑁) |
| 4 | | difsnid 4341 |
. . . . . . . 8
⊢ (𝐾 ∈ 𝑁 → ((𝑁 ∖ {𝐾}) ∪ {𝐾}) = 𝑁) |
| 5 | 4 | eqcomd 2628 |
. . . . . . 7
⊢ (𝐾 ∈ 𝑁 → 𝑁 = ((𝑁 ∖ {𝐾}) ∪ {𝐾})) |
| 6 | 5 | eleq2d 2687 |
. . . . . 6
⊢ (𝐾 ∈ 𝑁 → (𝑦 ∈ 𝑁 ↔ 𝑦 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}))) |
| 7 | 5 | eleq2d 2687 |
. . . . . 6
⊢ (𝐾 ∈ 𝑁 → (𝑧 ∈ 𝑁 ↔ 𝑧 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}))) |
| 8 | 6, 7 | anbi12d 747 |
. . . . 5
⊢ (𝐾 ∈ 𝑁 → ((𝑦 ∈ 𝑁 ∧ 𝑧 ∈ 𝑁) ↔ (𝑦 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ∧ 𝑧 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})))) |
| 9 | 8 | adantr 481 |
. . . 4
⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → ((𝑦 ∈ 𝑁 ∧ 𝑧 ∈ 𝑁) ↔ (𝑦 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ∧ 𝑧 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})))) |
| 10 | | elun 3753 |
. . . . . 6
⊢ (𝑦 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ↔ (𝑦 ∈ (𝑁 ∖ {𝐾}) ∨ 𝑦 ∈ {𝐾})) |
| 11 | | elun 3753 |
. . . . . 6
⊢ (𝑧 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ↔ (𝑧 ∈ (𝑁 ∖ {𝐾}) ∨ 𝑧 ∈ {𝐾})) |
| 12 | 1, 2 | symgextfv 17838 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → (𝑦 ∈ (𝑁 ∖ {𝐾}) → (𝐸‘𝑦) = (𝑍‘𝑦))) |
| 13 | 12 | com12 32 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (𝑁 ∖ {𝐾}) → ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → (𝐸‘𝑦) = (𝑍‘𝑦))) |
| 14 | 13 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) → ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → (𝐸‘𝑦) = (𝑍‘𝑦))) |
| 15 | 14 | imp 445 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) ∧ (𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆)) → (𝐸‘𝑦) = (𝑍‘𝑦)) |
| 16 | 1, 2 | symgextfv 17838 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → (𝑧 ∈ (𝑁 ∖ {𝐾}) → (𝐸‘𝑧) = (𝑍‘𝑧))) |
| 17 | 16 | com12 32 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ (𝑁 ∖ {𝐾}) → ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → (𝐸‘𝑧) = (𝑍‘𝑧))) |
| 18 | 17 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) → ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → (𝐸‘𝑧) = (𝑍‘𝑧))) |
| 19 | 18 | imp 445 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) ∧ (𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆)) → (𝐸‘𝑧) = (𝑍‘𝑧)) |
| 20 | 15, 19 | eqeq12d 2637 |
. . . . . . . . 9
⊢ (((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) ∧ (𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆)) → ((𝐸‘𝑦) = (𝐸‘𝑧) ↔ (𝑍‘𝑦) = (𝑍‘𝑧))) |
| 21 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢
(SymGrp‘(𝑁
∖ {𝐾})) =
(SymGrp‘(𝑁 ∖
{𝐾})) |
| 22 | 21, 1 | symgbasf1o 17803 |
. . . . . . . . . . . 12
⊢ (𝑍 ∈ 𝑆 → 𝑍:(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾})) |
| 23 | | f1of1 6136 |
. . . . . . . . . . . 12
⊢ (𝑍:(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}) → 𝑍:(𝑁 ∖ {𝐾})–1-1→(𝑁 ∖ {𝐾})) |
| 24 | | dff13 6512 |
. . . . . . . . . . . . 13
⊢ (𝑍:(𝑁 ∖ {𝐾})–1-1→(𝑁 ∖ {𝐾}) ↔ (𝑍:(𝑁 ∖ {𝐾})⟶(𝑁 ∖ {𝐾}) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})∀𝑗 ∈ (𝑁 ∖ {𝐾})((𝑍‘𝑖) = (𝑍‘𝑗) → 𝑖 = 𝑗))) |
| 25 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 = 𝑦 → (𝑍‘𝑖) = (𝑍‘𝑦)) |
| 26 | 25 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 = 𝑦 → ((𝑍‘𝑖) = (𝑍‘𝑗) ↔ (𝑍‘𝑦) = (𝑍‘𝑗))) |
| 27 | | equequ1 1952 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 = 𝑦 → (𝑖 = 𝑗 ↔ 𝑦 = 𝑗)) |
| 28 | 26, 27 | imbi12d 334 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = 𝑦 → (((𝑍‘𝑖) = (𝑍‘𝑗) → 𝑖 = 𝑗) ↔ ((𝑍‘𝑦) = (𝑍‘𝑗) → 𝑦 = 𝑗))) |
| 29 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = 𝑧 → (𝑍‘𝑗) = (𝑍‘𝑧)) |
| 30 | 29 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 = 𝑧 → ((𝑍‘𝑦) = (𝑍‘𝑗) ↔ (𝑍‘𝑦) = (𝑍‘𝑧))) |
| 31 | | equequ2 1953 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 = 𝑧 → (𝑦 = 𝑗 ↔ 𝑦 = 𝑧)) |
| 32 | 30, 31 | imbi12d 334 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = 𝑧 → (((𝑍‘𝑦) = (𝑍‘𝑗) → 𝑦 = 𝑗) ↔ ((𝑍‘𝑦) = (𝑍‘𝑧) → 𝑦 = 𝑧))) |
| 33 | 28, 32 | rspc2va 3323 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})∀𝑗 ∈ (𝑁 ∖ {𝐾})((𝑍‘𝑖) = (𝑍‘𝑗) → 𝑖 = 𝑗)) → ((𝑍‘𝑦) = (𝑍‘𝑧) → 𝑦 = 𝑧)) |
| 34 | 33 | expcom 451 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑖 ∈
(𝑁 ∖ {𝐾})∀𝑗 ∈ (𝑁 ∖ {𝐾})((𝑍‘𝑖) = (𝑍‘𝑗) → 𝑖 = 𝑗) → ((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) → ((𝑍‘𝑦) = (𝑍‘𝑧) → 𝑦 = 𝑧))) |
| 35 | 34 | a1d 25 |
. . . . . . . . . . . . . 14
⊢
(∀𝑖 ∈
(𝑁 ∖ {𝐾})∀𝑗 ∈ (𝑁 ∖ {𝐾})((𝑍‘𝑖) = (𝑍‘𝑗) → 𝑖 = 𝑗) → (𝐾 ∈ 𝑁 → ((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) → ((𝑍‘𝑦) = (𝑍‘𝑧) → 𝑦 = 𝑧)))) |
| 36 | 35 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑍:(𝑁 ∖ {𝐾})⟶(𝑁 ∖ {𝐾}) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})∀𝑗 ∈ (𝑁 ∖ {𝐾})((𝑍‘𝑖) = (𝑍‘𝑗) → 𝑖 = 𝑗)) → (𝐾 ∈ 𝑁 → ((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) → ((𝑍‘𝑦) = (𝑍‘𝑧) → 𝑦 = 𝑧)))) |
| 37 | 24, 36 | sylbi 207 |
. . . . . . . . . . . 12
⊢ (𝑍:(𝑁 ∖ {𝐾})–1-1→(𝑁 ∖ {𝐾}) → (𝐾 ∈ 𝑁 → ((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) → ((𝑍‘𝑦) = (𝑍‘𝑧) → 𝑦 = 𝑧)))) |
| 38 | 22, 23, 37 | 3syl 18 |
. . . . . . . . . . 11
⊢ (𝑍 ∈ 𝑆 → (𝐾 ∈ 𝑁 → ((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) → ((𝑍‘𝑦) = (𝑍‘𝑧) → 𝑦 = 𝑧)))) |
| 39 | 38 | impcom 446 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → ((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) → ((𝑍‘𝑦) = (𝑍‘𝑧) → 𝑦 = 𝑧))) |
| 40 | 39 | impcom 446 |
. . . . . . . . 9
⊢ (((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) ∧ (𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆)) → ((𝑍‘𝑦) = (𝑍‘𝑧) → 𝑦 = 𝑧)) |
| 41 | 20, 40 | sylbid 230 |
. . . . . . . 8
⊢ (((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) ∧ (𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆)) → ((𝐸‘𝑦) = (𝐸‘𝑧) → 𝑦 = 𝑧)) |
| 42 | 41 | ex 450 |
. . . . . . 7
⊢ ((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) → ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → ((𝐸‘𝑦) = (𝐸‘𝑧) → 𝑦 = 𝑧))) |
| 43 | 1, 2 | symgextf1lem 17840 |
. . . . . . . . 9
⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → ((𝑧 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑦 ∈ {𝐾}) → (𝐸‘𝑧) ≠ (𝐸‘𝑦))) |
| 44 | | eqneqall 2805 |
. . . . . . . . . . 11
⊢ ((𝐸‘𝑧) = (𝐸‘𝑦) → ((𝐸‘𝑧) ≠ (𝐸‘𝑦) → 𝑦 = 𝑧)) |
| 45 | 44 | eqcoms 2630 |
. . . . . . . . . 10
⊢ ((𝐸‘𝑦) = (𝐸‘𝑧) → ((𝐸‘𝑧) ≠ (𝐸‘𝑦) → 𝑦 = 𝑧)) |
| 46 | 45 | com12 32 |
. . . . . . . . 9
⊢ ((𝐸‘𝑧) ≠ (𝐸‘𝑦) → ((𝐸‘𝑦) = (𝐸‘𝑧) → 𝑦 = 𝑧)) |
| 47 | 43, 46 | syl6com 37 |
. . . . . . . 8
⊢ ((𝑧 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑦 ∈ {𝐾}) → ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → ((𝐸‘𝑦) = (𝐸‘𝑧) → 𝑦 = 𝑧))) |
| 48 | 47 | ancoms 469 |
. . . . . . 7
⊢ ((𝑦 ∈ {𝐾} ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) → ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → ((𝐸‘𝑦) = (𝐸‘𝑧) → 𝑦 = 𝑧))) |
| 49 | 1, 2 | symgextf1lem 17840 |
. . . . . . . 8
⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → ((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ {𝐾}) → (𝐸‘𝑦) ≠ (𝐸‘𝑧))) |
| 50 | | eqneqall 2805 |
. . . . . . . . 9
⊢ ((𝐸‘𝑦) = (𝐸‘𝑧) → ((𝐸‘𝑦) ≠ (𝐸‘𝑧) → 𝑦 = 𝑧)) |
| 51 | 50 | com12 32 |
. . . . . . . 8
⊢ ((𝐸‘𝑦) ≠ (𝐸‘𝑧) → ((𝐸‘𝑦) = (𝐸‘𝑧) → 𝑦 = 𝑧)) |
| 52 | 49, 51 | syl6com 37 |
. . . . . . 7
⊢ ((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ {𝐾}) → ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → ((𝐸‘𝑦) = (𝐸‘𝑧) → 𝑦 = 𝑧))) |
| 53 | | elsni 4194 |
. . . . . . . 8
⊢ (𝑦 ∈ {𝐾} → 𝑦 = 𝐾) |
| 54 | | elsni 4194 |
. . . . . . . 8
⊢ (𝑧 ∈ {𝐾} → 𝑧 = 𝐾) |
| 55 | | eqtr3 2643 |
. . . . . . . . 9
⊢ ((𝑦 = 𝐾 ∧ 𝑧 = 𝐾) → 𝑦 = 𝑧) |
| 56 | 55 | 2a1d 26 |
. . . . . . . 8
⊢ ((𝑦 = 𝐾 ∧ 𝑧 = 𝐾) → ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → ((𝐸‘𝑦) = (𝐸‘𝑧) → 𝑦 = 𝑧))) |
| 57 | 53, 54, 56 | syl2an 494 |
. . . . . . 7
⊢ ((𝑦 ∈ {𝐾} ∧ 𝑧 ∈ {𝐾}) → ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → ((𝐸‘𝑦) = (𝐸‘𝑧) → 𝑦 = 𝑧))) |
| 58 | 42, 48, 52, 57 | ccase 987 |
. . . . . 6
⊢ (((𝑦 ∈ (𝑁 ∖ {𝐾}) ∨ 𝑦 ∈ {𝐾}) ∧ (𝑧 ∈ (𝑁 ∖ {𝐾}) ∨ 𝑧 ∈ {𝐾})) → ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → ((𝐸‘𝑦) = (𝐸‘𝑧) → 𝑦 = 𝑧))) |
| 59 | 10, 11, 58 | syl2anb 496 |
. . . . 5
⊢ ((𝑦 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ∧ 𝑧 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})) → ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → ((𝐸‘𝑦) = (𝐸‘𝑧) → 𝑦 = 𝑧))) |
| 60 | 59 | com12 32 |
. . . 4
⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → ((𝑦 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ∧ 𝑧 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})) → ((𝐸‘𝑦) = (𝐸‘𝑧) → 𝑦 = 𝑧))) |
| 61 | 9, 60 | sylbid 230 |
. . 3
⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → ((𝑦 ∈ 𝑁 ∧ 𝑧 ∈ 𝑁) → ((𝐸‘𝑦) = (𝐸‘𝑧) → 𝑦 = 𝑧))) |
| 62 | 61 | ralrimivv 2970 |
. 2
⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → ∀𝑦 ∈ 𝑁 ∀𝑧 ∈ 𝑁 ((𝐸‘𝑦) = (𝐸‘𝑧) → 𝑦 = 𝑧)) |
| 63 | | dff13 6512 |
. 2
⊢ (𝐸:𝑁–1-1→𝑁 ↔ (𝐸:𝑁⟶𝑁 ∧ ∀𝑦 ∈ 𝑁 ∀𝑧 ∈ 𝑁 ((𝐸‘𝑦) = (𝐸‘𝑧) → 𝑦 = 𝑧))) |
| 64 | 3, 62, 63 | sylanbrc 698 |
1
⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → 𝐸:𝑁–1-1→𝑁) |