![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > threehalves | Structured version Visualization version GIF version |
Description: Example theorem demonstrating decimal expansions. (Contributed by Thierry Arnoux, 27-Dec-2021.) |
Ref | Expression |
---|---|
threehalves | ⊢ (3 / 2) = (1.5) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3re 11094 | . . . . 5 ⊢ 3 ∈ ℝ | |
2 | 2re 11090 | . . . . 5 ⊢ 2 ∈ ℝ | |
3 | 2ne0 11113 | . . . . 5 ⊢ 2 ≠ 0 | |
4 | 1, 2, 3 | redivcli 10792 | . . . 4 ⊢ (3 / 2) ∈ ℝ |
5 | 4 | recni 10052 | . . 3 ⊢ (3 / 2) ∈ ℂ |
6 | 1nn0 11308 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
7 | 5re 11099 | . . . . 5 ⊢ 5 ∈ ℝ | |
8 | dpcl 29598 | . . . . 5 ⊢ ((1 ∈ ℕ0 ∧ 5 ∈ ℝ) → (1.5) ∈ ℝ) | |
9 | 6, 7, 8 | mp2an 708 | . . . 4 ⊢ (1.5) ∈ ℝ |
10 | 9 | recni 10052 | . . 3 ⊢ (1.5) ∈ ℂ |
11 | 2cnne0 11242 | . . 3 ⊢ (2 ∈ ℂ ∧ 2 ≠ 0) | |
12 | 5, 10, 11 | 3pm3.2i 1239 | . 2 ⊢ ((3 / 2) ∈ ℂ ∧ (1.5) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) |
13 | 5nn0 11312 | . . . . 5 ⊢ 5 ∈ ℕ0 | |
14 | 3nn0 11310 | . . . . 5 ⊢ 3 ∈ ℕ0 | |
15 | 0nn0 11307 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
16 | eqid 2622 | . . . . . 6 ⊢ ;15 = ;15 | |
17 | df-2 11079 | . . . . . . . 8 ⊢ 2 = (1 + 1) | |
18 | 17 | oveq1i 6660 | . . . . . . 7 ⊢ (2 + 1) = ((1 + 1) + 1) |
19 | 2p1e3 11151 | . . . . . . 7 ⊢ (2 + 1) = 3 | |
20 | 18, 19 | eqtr3i 2646 | . . . . . 6 ⊢ ((1 + 1) + 1) = 3 |
21 | 5p5e10 11596 | . . . . . 6 ⊢ (5 + 5) = ;10 | |
22 | 6, 13, 6, 13, 16, 16, 20, 15, 21 | decaddc 11572 | . . . . 5 ⊢ (;15 + ;15) = ;30 |
23 | 6, 13, 6, 13, 14, 15, 22 | dpadd 29619 | . . . 4 ⊢ ((1.5) + (1.5)) = (3.0) |
24 | 14 | dp0u 29609 | . . . 4 ⊢ (3.0) = 3 |
25 | 23, 24 | eqtri 2644 | . . 3 ⊢ ((1.5) + (1.5)) = 3 |
26 | 10 | times2i 11148 | . . 3 ⊢ ((1.5) · 2) = ((1.5) + (1.5)) |
27 | 1 | recni 10052 | . . . 4 ⊢ 3 ∈ ℂ |
28 | 11 | simpli 474 | . . . 4 ⊢ 2 ∈ ℂ |
29 | 27, 28, 3 | divcan1i 10769 | . . 3 ⊢ ((3 / 2) · 2) = 3 |
30 | 25, 26, 29 | 3eqtr4ri 2655 | . 2 ⊢ ((3 / 2) · 2) = ((1.5) · 2) |
31 | mulcan2 10665 | . . 3 ⊢ (((3 / 2) ∈ ℂ ∧ (1.5) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((3 / 2) · 2) = ((1.5) · 2) ↔ (3 / 2) = (1.5))) | |
32 | 31 | biimpa 501 | . 2 ⊢ ((((3 / 2) ∈ ℂ ∧ (1.5) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) ∧ ((3 / 2) · 2) = ((1.5) · 2)) → (3 / 2) = (1.5)) |
33 | 12, 30, 32 | mp2an 708 | 1 ⊢ (3 / 2) = (1.5) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 (class class class)co 6650 ℂcc 9934 ℝcr 9935 0cc0 9936 1c1 9937 + caddc 9939 · cmul 9941 / cdiv 10684 2c2 11070 3c3 11071 5c5 11073 ℕ0cn0 11292 ;cdc 11493 .cdp 29595 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-dec 11494 df-dp2 29578 df-dp 29596 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |