MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttgbtwnid Structured version   Visualization version   GIF version

Theorem ttgbtwnid 25764
Description: Any subcomplex module equipped with the betweenness operation fulfills the identity of betweenness (Axiom A6). (Contributed by Thierry Arnoux, 26-Mar-2019.)
Hypotheses
Ref Expression
ttgval.n 𝐺 = (toTG‘𝐻)
ttgitvval.i 𝐼 = (Itv‘𝐺)
ttgitvval.b 𝑃 = (Base‘𝐻)
ttgitvval.m = (-g𝐻)
ttgitvval.s · = ( ·𝑠𝐻)
ttgelitv.x (𝜑𝑋𝑃)
ttgelitv.y (𝜑𝑌𝑃)
ttgbtwnid.r 𝑅 = (Base‘(Scalar‘𝐻))
ttgbtwnid.2 (𝜑 → (0[,]1) ⊆ 𝑅)
ttgbtwnid.1 (𝜑𝐻 ∈ ℂMod)
ttgbtwnid.y (𝜑𝑌 ∈ (𝑋𝐼𝑋))
Assertion
Ref Expression
ttgbtwnid (𝜑𝑋 = 𝑌)

Proof of Theorem ttgbtwnid
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 simpll 790 . . . 4 (((𝜑𝑘 ∈ (0[,]1)) ∧ (𝑌 𝑋) = (𝑘 · (𝑋 𝑋))) → 𝜑)
2 simpr 477 . . . . 5 (((𝜑𝑘 ∈ (0[,]1)) ∧ (𝑌 𝑋) = (𝑘 · (𝑋 𝑋))) → (𝑌 𝑋) = (𝑘 · (𝑋 𝑋)))
3 ttgbtwnid.1 . . . . . . . . 9 (𝜑𝐻 ∈ ℂMod)
4 clmlmod 22867 . . . . . . . . 9 (𝐻 ∈ ℂMod → 𝐻 ∈ LMod)
53, 4syl 17 . . . . . . . 8 (𝜑𝐻 ∈ LMod)
6 ttgelitv.x . . . . . . . 8 (𝜑𝑋𝑃)
7 ttgitvval.b . . . . . . . . 9 𝑃 = (Base‘𝐻)
8 eqid 2622 . . . . . . . . 9 (0g𝐻) = (0g𝐻)
9 ttgitvval.m . . . . . . . . 9 = (-g𝐻)
107, 8, 9lmodsubid 18923 . . . . . . . 8 ((𝐻 ∈ LMod ∧ 𝑋𝑃) → (𝑋 𝑋) = (0g𝐻))
115, 6, 10syl2anc 693 . . . . . . 7 (𝜑 → (𝑋 𝑋) = (0g𝐻))
1211ad2antrr 762 . . . . . 6 (((𝜑𝑘 ∈ (0[,]1)) ∧ (𝑌 𝑋) = (𝑘 · (𝑋 𝑋))) → (𝑋 𝑋) = (0g𝐻))
1312oveq2d 6666 . . . . 5 (((𝜑𝑘 ∈ (0[,]1)) ∧ (𝑌 𝑋) = (𝑘 · (𝑋 𝑋))) → (𝑘 · (𝑋 𝑋)) = (𝑘 · (0g𝐻)))
145ad2antrr 762 . . . . . 6 (((𝜑𝑘 ∈ (0[,]1)) ∧ (𝑌 𝑋) = (𝑘 · (𝑋 𝑋))) → 𝐻 ∈ LMod)
15 ttgbtwnid.2 . . . . . . . 8 (𝜑 → (0[,]1) ⊆ 𝑅)
1615ad2antrr 762 . . . . . . 7 (((𝜑𝑘 ∈ (0[,]1)) ∧ (𝑌 𝑋) = (𝑘 · (𝑋 𝑋))) → (0[,]1) ⊆ 𝑅)
17 simplr 792 . . . . . . 7 (((𝜑𝑘 ∈ (0[,]1)) ∧ (𝑌 𝑋) = (𝑘 · (𝑋 𝑋))) → 𝑘 ∈ (0[,]1))
1816, 17sseldd 3604 . . . . . 6 (((𝜑𝑘 ∈ (0[,]1)) ∧ (𝑌 𝑋) = (𝑘 · (𝑋 𝑋))) → 𝑘𝑅)
19 eqid 2622 . . . . . . 7 (Scalar‘𝐻) = (Scalar‘𝐻)
20 ttgitvval.s . . . . . . 7 · = ( ·𝑠𝐻)
21 ttgbtwnid.r . . . . . . 7 𝑅 = (Base‘(Scalar‘𝐻))
2219, 20, 21, 8lmodvs0 18897 . . . . . 6 ((𝐻 ∈ LMod ∧ 𝑘𝑅) → (𝑘 · (0g𝐻)) = (0g𝐻))
2314, 18, 22syl2anc 693 . . . . 5 (((𝜑𝑘 ∈ (0[,]1)) ∧ (𝑌 𝑋) = (𝑘 · (𝑋 𝑋))) → (𝑘 · (0g𝐻)) = (0g𝐻))
242, 13, 233eqtrd 2660 . . . 4 (((𝜑𝑘 ∈ (0[,]1)) ∧ (𝑌 𝑋) = (𝑘 · (𝑋 𝑋))) → (𝑌 𝑋) = (0g𝐻))
25 ttgelitv.y . . . . . 6 (𝜑𝑌𝑃)
267, 8, 9lmodsubeq0 18922 . . . . . 6 ((𝐻 ∈ LMod ∧ 𝑌𝑃𝑋𝑃) → ((𝑌 𝑋) = (0g𝐻) ↔ 𝑌 = 𝑋))
275, 25, 6, 26syl3anc 1326 . . . . 5 (𝜑 → ((𝑌 𝑋) = (0g𝐻) ↔ 𝑌 = 𝑋))
2827biimpa 501 . . . 4 ((𝜑 ∧ (𝑌 𝑋) = (0g𝐻)) → 𝑌 = 𝑋)
291, 24, 28syl2anc 693 . . 3 (((𝜑𝑘 ∈ (0[,]1)) ∧ (𝑌 𝑋) = (𝑘 · (𝑋 𝑋))) → 𝑌 = 𝑋)
3029eqcomd 2628 . 2 (((𝜑𝑘 ∈ (0[,]1)) ∧ (𝑌 𝑋) = (𝑘 · (𝑋 𝑋))) → 𝑋 = 𝑌)
31 ttgbtwnid.y . . 3 (𝜑𝑌 ∈ (𝑋𝐼𝑋))
32 ttgval.n . . . 4 𝐺 = (toTG‘𝐻)
33 ttgitvval.i . . . 4 𝐼 = (Itv‘𝐺)
3432, 33, 7, 9, 20, 6, 6, 3, 25ttgelitv 25763 . . 3 (𝜑 → (𝑌 ∈ (𝑋𝐼𝑋) ↔ ∃𝑘 ∈ (0[,]1)(𝑌 𝑋) = (𝑘 · (𝑋 𝑋))))
3531, 34mpbid 222 . 2 (𝜑 → ∃𝑘 ∈ (0[,]1)(𝑌 𝑋) = (𝑘 · (𝑋 𝑋)))
3630, 35r19.29a 3078 1 (𝜑𝑋 = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wrex 2913  wss 3574  cfv 5888  (class class class)co 6650  0cc0 9936  1c1 9937  [,]cicc 12178  Basecbs 15857  Scalarcsca 15944   ·𝑠 cvsca 15945  0gc0g 16100  -gcsg 17424  LModclmod 18863  ℂModcclm 22862  Itvcitv 25335  toTGcttg 25753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-dec 11494  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mgp 18490  df-ring 18549  df-lmod 18865  df-clm 22863  df-itv 25337  df-lng 25338  df-ttg 25754
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator