![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ttgelitv | Structured version Visualization version GIF version |
Description: Betweenness for a subcomplex Hilbert space augmented with betweenness. (Contributed by Thierry Arnoux, 25-Mar-2019.) |
Ref | Expression |
---|---|
ttgval.n | ⊢ 𝐺 = (toTG‘𝐻) |
ttgitvval.i | ⊢ 𝐼 = (Itv‘𝐺) |
ttgitvval.b | ⊢ 𝑃 = (Base‘𝐻) |
ttgitvval.m | ⊢ − = (-g‘𝐻) |
ttgitvval.s | ⊢ · = ( ·𝑠 ‘𝐻) |
ttgelitv.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
ttgelitv.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
ttgelitv.h | ⊢ (𝜑 → 𝐻 ∈ 𝑉) |
ttgelitv.z | ⊢ (𝜑 → 𝑍 ∈ 𝑃) |
Ref | Expression |
---|---|
ttgelitv | ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ↔ ∃𝑘 ∈ (0[,]1)(𝑍 − 𝑋) = (𝑘 · (𝑌 − 𝑋)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ttgelitv.h | . . . . 5 ⊢ (𝜑 → 𝐻 ∈ 𝑉) | |
2 | ttgelitv.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
3 | ttgelitv.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
4 | ttgval.n | . . . . . 6 ⊢ 𝐺 = (toTG‘𝐻) | |
5 | ttgitvval.i | . . . . . 6 ⊢ 𝐼 = (Itv‘𝐺) | |
6 | ttgitvval.b | . . . . . 6 ⊢ 𝑃 = (Base‘𝐻) | |
7 | ttgitvval.m | . . . . . 6 ⊢ − = (-g‘𝐻) | |
8 | ttgitvval.s | . . . . . 6 ⊢ · = ( ·𝑠 ‘𝐻) | |
9 | 4, 5, 6, 7, 8 | ttgitvval 25762 | . . . . 5 ⊢ ((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → (𝑋𝐼𝑌) = {𝑧 ∈ 𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑋) = (𝑘 · (𝑌 − 𝑋))}) |
10 | 1, 2, 3, 9 | syl3anc 1326 | . . . 4 ⊢ (𝜑 → (𝑋𝐼𝑌) = {𝑧 ∈ 𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑋) = (𝑘 · (𝑌 − 𝑋))}) |
11 | 10 | eleq2d 2687 | . . 3 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ↔ 𝑍 ∈ {𝑧 ∈ 𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑋) = (𝑘 · (𝑌 − 𝑋))})) |
12 | oveq1 6657 | . . . . . 6 ⊢ (𝑧 = 𝑍 → (𝑧 − 𝑋) = (𝑍 − 𝑋)) | |
13 | 12 | eqeq1d 2624 | . . . . 5 ⊢ (𝑧 = 𝑍 → ((𝑧 − 𝑋) = (𝑘 · (𝑌 − 𝑋)) ↔ (𝑍 − 𝑋) = (𝑘 · (𝑌 − 𝑋)))) |
14 | 13 | rexbidv 3052 | . . . 4 ⊢ (𝑧 = 𝑍 → (∃𝑘 ∈ (0[,]1)(𝑧 − 𝑋) = (𝑘 · (𝑌 − 𝑋)) ↔ ∃𝑘 ∈ (0[,]1)(𝑍 − 𝑋) = (𝑘 · (𝑌 − 𝑋)))) |
15 | 14 | elrab 3363 | . . 3 ⊢ (𝑍 ∈ {𝑧 ∈ 𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑋) = (𝑘 · (𝑌 − 𝑋))} ↔ (𝑍 ∈ 𝑃 ∧ ∃𝑘 ∈ (0[,]1)(𝑍 − 𝑋) = (𝑘 · (𝑌 − 𝑋)))) |
16 | 11, 15 | syl6bb 276 | . 2 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ↔ (𝑍 ∈ 𝑃 ∧ ∃𝑘 ∈ (0[,]1)(𝑍 − 𝑋) = (𝑘 · (𝑌 − 𝑋))))) |
17 | ttgelitv.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑃) | |
18 | 17 | biantrurd 529 | . 2 ⊢ (𝜑 → (∃𝑘 ∈ (0[,]1)(𝑍 − 𝑋) = (𝑘 · (𝑌 − 𝑋)) ↔ (𝑍 ∈ 𝑃 ∧ ∃𝑘 ∈ (0[,]1)(𝑍 − 𝑋) = (𝑘 · (𝑌 − 𝑋))))) |
19 | 16, 18 | bitr4d 271 | 1 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ↔ ∃𝑘 ∈ (0[,]1)(𝑍 − 𝑋) = (𝑘 · (𝑌 − 𝑋)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∃wrex 2913 {crab 2916 ‘cfv 5888 (class class class)co 6650 0cc0 9936 1c1 9937 [,]cicc 12178 Basecbs 15857 ·𝑠 cvsca 15945 -gcsg 17424 Itvcitv 25335 toTGcttg 25753 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-dec 11494 df-ndx 15860 df-slot 15861 df-sets 15864 df-itv 25337 df-lng 25338 df-ttg 25754 |
This theorem is referenced by: ttgbtwnid 25764 ttgcontlem1 25765 |
Copyright terms: Public domain | W3C validator |