| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2622 |
. . . 4
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
| 2 | | eqid 2622 |
. . . 4
⊢
(Edg‘𝐺) =
(Edg‘𝐺) |
| 3 | 1, 2 | clwwlknp 26887 |
. . 3
⊢ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺))) |
| 4 | | simpr 477 |
. . . . 5
⊢
(((((𝑊 ∈ Word
(Vtx‘𝐺) ∧
(#‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (ℤ≥‘2))
∧ 𝐺 ∈ UMGraph )
→ 𝐺 ∈ UMGraph
) |
| 5 | | uz2m1nn 11763 |
. . . . . . . . . . 11
⊢ (𝑁 ∈
(ℤ≥‘2) → (𝑁 − 1) ∈ ℕ) |
| 6 | | lbfzo0 12507 |
. . . . . . . . . . 11
⊢ (0 ∈
(0..^(𝑁 − 1)) ↔
(𝑁 − 1) ∈
ℕ) |
| 7 | 5, 6 | sylibr 224 |
. . . . . . . . . 10
⊢ (𝑁 ∈
(ℤ≥‘2) → 0 ∈ (0..^(𝑁 − 1))) |
| 8 | | fveq2 6191 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 0 → (𝑊‘𝑖) = (𝑊‘0)) |
| 9 | 8 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈
(ℤ≥‘2) ∧ 𝑖 = 0) → (𝑊‘𝑖) = (𝑊‘0)) |
| 10 | | oveq1 6657 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = 0 → (𝑖 + 1) = (0 + 1)) |
| 11 | 10 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈
(ℤ≥‘2) ∧ 𝑖 = 0) → (𝑖 + 1) = (0 + 1)) |
| 12 | | 0p1e1 11132 |
. . . . . . . . . . . . . 14
⊢ (0 + 1) =
1 |
| 13 | 11, 12 | syl6eq 2672 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈
(ℤ≥‘2) ∧ 𝑖 = 0) → (𝑖 + 1) = 1) |
| 14 | 13 | fveq2d 6195 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈
(ℤ≥‘2) ∧ 𝑖 = 0) → (𝑊‘(𝑖 + 1)) = (𝑊‘1)) |
| 15 | 9, 14 | preq12d 4276 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈
(ℤ≥‘2) ∧ 𝑖 = 0) → {(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} = {(𝑊‘0), (𝑊‘1)}) |
| 16 | 15 | eleq1d 2686 |
. . . . . . . . . 10
⊢ ((𝑁 ∈
(ℤ≥‘2) ∧ 𝑖 = 0) → ({(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺))) |
| 17 | 7, 16 | rspcdv 3312 |
. . . . . . . . 9
⊢ (𝑁 ∈
(ℤ≥‘2) → (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺))) |
| 18 | 17 | com12 32 |
. . . . . . . 8
⊢
(∀𝑖 ∈
(0..^(𝑁 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → (𝑁 ∈ (ℤ≥‘2)
→ {(𝑊‘0), (𝑊‘1)} ∈
(Edg‘𝐺))) |
| 19 | 18 | 3ad2ant2 1083 |
. . . . . . 7
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) → (𝑁 ∈ (ℤ≥‘2)
→ {(𝑊‘0), (𝑊‘1)} ∈
(Edg‘𝐺))) |
| 20 | 19 | imp 445 |
. . . . . 6
⊢ ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (ℤ≥‘2))
→ {(𝑊‘0), (𝑊‘1)} ∈
(Edg‘𝐺)) |
| 21 | 20 | adantr 481 |
. . . . 5
⊢
(((((𝑊 ∈ Word
(Vtx‘𝐺) ∧
(#‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (ℤ≥‘2))
∧ 𝐺 ∈ UMGraph )
→ {(𝑊‘0), (𝑊‘1)} ∈
(Edg‘𝐺)) |
| 22 | 2 | umgredgne 26040 |
. . . . . 6
⊢ ((𝐺 ∈ UMGraph ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)) → (𝑊‘0) ≠ (𝑊‘1)) |
| 23 | 22 | necomd 2849 |
. . . . 5
⊢ ((𝐺 ∈ UMGraph ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)) → (𝑊‘1) ≠ (𝑊‘0)) |
| 24 | 4, 21, 23 | syl2anc 693 |
. . . 4
⊢
(((((𝑊 ∈ Word
(Vtx‘𝐺) ∧
(#‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (ℤ≥‘2))
∧ 𝐺 ∈ UMGraph )
→ (𝑊‘1) ≠
(𝑊‘0)) |
| 25 | 24 | exp31 630 |
. . 3
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) → (𝑁 ∈ (ℤ≥‘2)
→ (𝐺 ∈ UMGraph
→ (𝑊‘1) ≠
(𝑊‘0)))) |
| 26 | 3, 25 | syl 17 |
. 2
⊢ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → (𝑁 ∈ (ℤ≥‘2)
→ (𝐺 ∈ UMGraph
→ (𝑊‘1) ≠
(𝑊‘0)))) |
| 27 | 26 | 3imp31 1257 |
1
⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈
(ℤ≥‘2) ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → (𝑊‘1) ≠ (𝑊‘0)) |