Proof of Theorem unblimceq0lem
| Step | Hyp | Ref
| Expression |
| 1 | | breq1 4656 |
. . . . . . . 8
⊢ (𝑏 = if(𝐴 ∈ 𝑆, ((abs‘(𝐹‘𝐴)) + 𝑐), 𝑐) → (𝑏 ≤ (abs‘(𝐹‘𝑥)) ↔ if(𝐴 ∈ 𝑆, ((abs‘(𝐹‘𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹‘𝑥)))) |
| 2 | 1 | anbi2d 740 |
. . . . . . 7
⊢ (𝑏 = if(𝐴 ∈ 𝑆, ((abs‘(𝐹‘𝐴)) + 𝑐), 𝑐) → (((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ 𝑏 ≤ (abs‘(𝐹‘𝑥))) ↔ ((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ if(𝐴 ∈ 𝑆, ((abs‘(𝐹‘𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹‘𝑥))))) |
| 3 | 2 | rexbidv 3052 |
. . . . . 6
⊢ (𝑏 = if(𝐴 ∈ 𝑆, ((abs‘(𝐹‘𝐴)) + 𝑐), 𝑐) → (∃𝑥 ∈ 𝑆 ((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ 𝑏 ≤ (abs‘(𝐹‘𝑥))) ↔ ∃𝑥 ∈ 𝑆 ((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ if(𝐴 ∈ 𝑆, ((abs‘(𝐹‘𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹‘𝑥))))) |
| 4 | 3 | ralbidv 2986 |
. . . . 5
⊢ (𝑏 = if(𝐴 ∈ 𝑆, ((abs‘(𝐹‘𝐴)) + 𝑐), 𝑐) → (∀𝑑 ∈ ℝ+ ∃𝑥 ∈ 𝑆 ((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ 𝑏 ≤ (abs‘(𝐹‘𝑥))) ↔ ∀𝑑 ∈ ℝ+ ∃𝑥 ∈ 𝑆 ((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ if(𝐴 ∈ 𝑆, ((abs‘(𝐹‘𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹‘𝑥))))) |
| 5 | | unblimceq0lem.3 |
. . . . . 6
⊢ (𝜑 → ∀𝑏 ∈ ℝ+ ∀𝑑 ∈ ℝ+
∃𝑥 ∈ 𝑆 ((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ 𝑏 ≤ (abs‘(𝐹‘𝑥)))) |
| 6 | 5 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
→ ∀𝑏 ∈
ℝ+ ∀𝑑 ∈ ℝ+ ∃𝑥 ∈ 𝑆 ((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ 𝑏 ≤ (abs‘(𝐹‘𝑥)))) |
| 7 | | unblimceq0lem.1 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹:𝑆⟶ℂ) |
| 8 | 7 | ad2antrr 762 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝐴 ∈ 𝑆) → 𝐹:𝑆⟶ℂ) |
| 9 | | simpr 477 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝐴 ∈ 𝑆) → 𝐴 ∈ 𝑆) |
| 10 | 8, 9 | ffvelrnd 6360 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝐴 ∈ 𝑆) → (𝐹‘𝐴) ∈ ℂ) |
| 11 | 10 | abscld 14175 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝐴 ∈ 𝑆) → (abs‘(𝐹‘𝐴)) ∈ ℝ) |
| 12 | | simprl 794 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
→ 𝑐 ∈
ℝ+) |
| 13 | 12 | rpred 11872 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
→ 𝑐 ∈
ℝ) |
| 14 | 13 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝐴 ∈ 𝑆) → 𝑐 ∈ ℝ) |
| 15 | 11, 14 | readdcld 10069 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝐴 ∈ 𝑆) → ((abs‘(𝐹‘𝐴)) + 𝑐) ∈ ℝ) |
| 16 | 10 | absge0d 14183 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝐴 ∈ 𝑆) → 0 ≤
(abs‘(𝐹‘𝐴))) |
| 17 | 12 | rpgt0d 11875 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
→ 0 < 𝑐) |
| 18 | 17 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝐴 ∈ 𝑆) → 0 < 𝑐) |
| 19 | 11, 14, 16, 18 | addgegt0d 10601 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝐴 ∈ 𝑆) → 0 <
((abs‘(𝐹‘𝐴)) + 𝑐)) |
| 20 | 15, 19 | elrpd 11869 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝐴 ∈ 𝑆) → ((abs‘(𝐹‘𝐴)) + 𝑐) ∈
ℝ+) |
| 21 | | simplrl 800 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ ¬ 𝐴 ∈ 𝑆) → 𝑐 ∈ ℝ+) |
| 22 | 20, 21 | ifclda 4120 |
. . . . 5
⊢ ((𝜑 ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
→ if(𝐴 ∈ 𝑆, ((abs‘(𝐹‘𝐴)) + 𝑐), 𝑐) ∈
ℝ+) |
| 23 | 4, 6, 22 | rspcdva 3316 |
. . . 4
⊢ ((𝜑 ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
→ ∀𝑑 ∈
ℝ+ ∃𝑥 ∈ 𝑆 ((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ if(𝐴 ∈ 𝑆, ((abs‘(𝐹‘𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹‘𝑥)))) |
| 24 | | simprr 796 |
. . . 4
⊢ ((𝜑 ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
→ 𝑑 ∈
ℝ+) |
| 25 | | rsp 2929 |
. . . 4
⊢
(∀𝑑 ∈
ℝ+ ∃𝑥 ∈ 𝑆 ((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ if(𝐴 ∈ 𝑆, ((abs‘(𝐹‘𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹‘𝑥))) → (𝑑 ∈ ℝ+ →
∃𝑥 ∈ 𝑆 ((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ if(𝐴 ∈ 𝑆, ((abs‘(𝐹‘𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹‘𝑥))))) |
| 26 | 23, 24, 25 | sylc 65 |
. . 3
⊢ ((𝜑 ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
→ ∃𝑥 ∈
𝑆 ((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ if(𝐴 ∈ 𝑆, ((abs‘(𝐹‘𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹‘𝑥)))) |
| 27 | | simprl 794 |
. . . 4
⊢ (((𝜑 ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ (𝑥 ∈ 𝑆 ∧ ((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ if(𝐴 ∈ 𝑆, ((abs‘(𝐹‘𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹‘𝑥))))) → 𝑥 ∈ 𝑆) |
| 28 | | neeq1 2856 |
. . . . . 6
⊢ (𝑦 = 𝑥 → (𝑦 ≠ 𝐴 ↔ 𝑥 ≠ 𝐴)) |
| 29 | | oveq1 6657 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → (𝑦 − 𝐴) = (𝑥 − 𝐴)) |
| 30 | 29 | fveq2d 6195 |
. . . . . . 7
⊢ (𝑦 = 𝑥 → (abs‘(𝑦 − 𝐴)) = (abs‘(𝑥 − 𝐴))) |
| 31 | 30 | breq1d 4663 |
. . . . . 6
⊢ (𝑦 = 𝑥 → ((abs‘(𝑦 − 𝐴)) < 𝑑 ↔ (abs‘(𝑥 − 𝐴)) < 𝑑)) |
| 32 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → (𝐹‘𝑦) = (𝐹‘𝑥)) |
| 33 | 32 | fveq2d 6195 |
. . . . . . 7
⊢ (𝑦 = 𝑥 → (abs‘(𝐹‘𝑦)) = (abs‘(𝐹‘𝑥))) |
| 34 | 33 | breq2d 4665 |
. . . . . 6
⊢ (𝑦 = 𝑥 → (𝑐 ≤ (abs‘(𝐹‘𝑦)) ↔ 𝑐 ≤ (abs‘(𝐹‘𝑥)))) |
| 35 | 28, 31, 34 | 3anbi123d 1399 |
. . . . 5
⊢ (𝑦 = 𝑥 → ((𝑦 ≠ 𝐴 ∧ (abs‘(𝑦 − 𝐴)) < 𝑑 ∧ 𝑐 ≤ (abs‘(𝐹‘𝑦))) ↔ (𝑥 ≠ 𝐴 ∧ (abs‘(𝑥 − 𝐴)) < 𝑑 ∧ 𝑐 ≤ (abs‘(𝐹‘𝑥))))) |
| 36 | 35 | adantl 482 |
. . . 4
⊢ ((((𝜑 ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ (𝑥 ∈ 𝑆 ∧ ((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ if(𝐴 ∈ 𝑆, ((abs‘(𝐹‘𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹‘𝑥))))) ∧ 𝑦 = 𝑥) → ((𝑦 ≠ 𝐴 ∧ (abs‘(𝑦 − 𝐴)) < 𝑑 ∧ 𝑐 ≤ (abs‘(𝐹‘𝑦))) ↔ (𝑥 ≠ 𝐴 ∧ (abs‘(𝑥 − 𝐴)) < 𝑑 ∧ 𝑐 ≤ (abs‘(𝐹‘𝑥))))) |
| 37 | 15 | adantlr 751 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ (𝑥 ∈ 𝑆 ∧ ((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ if(𝐴 ∈ 𝑆, ((abs‘(𝐹‘𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹‘𝑥))))) ∧ 𝐴 ∈ 𝑆) → ((abs‘(𝐹‘𝐴)) + 𝑐) ∈ ℝ) |
| 38 | 7 | ad2antrr 762 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ (𝑥 ∈ 𝑆 ∧ ((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ if(𝐴 ∈ 𝑆, ((abs‘(𝐹‘𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹‘𝑥))))) → 𝐹:𝑆⟶ℂ) |
| 39 | 38, 27 | ffvelrnd 6360 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ (𝑥 ∈ 𝑆 ∧ ((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ if(𝐴 ∈ 𝑆, ((abs‘(𝐹‘𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹‘𝑥))))) → (𝐹‘𝑥) ∈ ℂ) |
| 40 | 39 | abscld 14175 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ (𝑥 ∈ 𝑆 ∧ ((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ if(𝐴 ∈ 𝑆, ((abs‘(𝐹‘𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹‘𝑥))))) → (abs‘(𝐹‘𝑥)) ∈ ℝ) |
| 41 | 40 | adantr 481 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ (𝑥 ∈ 𝑆 ∧ ((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ if(𝐴 ∈ 𝑆, ((abs‘(𝐹‘𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹‘𝑥))))) ∧ 𝐴 ∈ 𝑆) → (abs‘(𝐹‘𝑥)) ∈ ℝ) |
| 42 | | simpr 477 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ (𝑥 ∈ 𝑆 ∧ ((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ if(𝐴 ∈ 𝑆, ((abs‘(𝐹‘𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹‘𝑥))))) ∧ 𝐴 ∈ 𝑆) → 𝐴 ∈ 𝑆) |
| 43 | 42 | iftrued 4094 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ (𝑥 ∈ 𝑆 ∧ ((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ if(𝐴 ∈ 𝑆, ((abs‘(𝐹‘𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹‘𝑥))))) ∧ 𝐴 ∈ 𝑆) → if(𝐴 ∈ 𝑆, ((abs‘(𝐹‘𝐴)) + 𝑐), 𝑐) = ((abs‘(𝐹‘𝐴)) + 𝑐)) |
| 44 | 43 | eqcomd 2628 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ (𝑥 ∈ 𝑆 ∧ ((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ if(𝐴 ∈ 𝑆, ((abs‘(𝐹‘𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹‘𝑥))))) ∧ 𝐴 ∈ 𝑆) → ((abs‘(𝐹‘𝐴)) + 𝑐) = if(𝐴 ∈ 𝑆, ((abs‘(𝐹‘𝐴)) + 𝑐), 𝑐)) |
| 45 | | simprrr 805 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ (𝑥 ∈ 𝑆 ∧ ((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ if(𝐴 ∈ 𝑆, ((abs‘(𝐹‘𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹‘𝑥))))) → if(𝐴 ∈ 𝑆, ((abs‘(𝐹‘𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹‘𝑥))) |
| 46 | 45 | adantr 481 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ (𝑥 ∈ 𝑆 ∧ ((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ if(𝐴 ∈ 𝑆, ((abs‘(𝐹‘𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹‘𝑥))))) ∧ 𝐴 ∈ 𝑆) → if(𝐴 ∈ 𝑆, ((abs‘(𝐹‘𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹‘𝑥))) |
| 47 | 44, 46 | eqbrtrd 4675 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ (𝑥 ∈ 𝑆 ∧ ((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ if(𝐴 ∈ 𝑆, ((abs‘(𝐹‘𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹‘𝑥))))) ∧ 𝐴 ∈ 𝑆) → ((abs‘(𝐹‘𝐴)) + 𝑐) ≤ (abs‘(𝐹‘𝑥))) |
| 48 | 37, 41, 47 | lensymd 10188 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ (𝑥 ∈ 𝑆 ∧ ((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ if(𝐴 ∈ 𝑆, ((abs‘(𝐹‘𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹‘𝑥))))) ∧ 𝐴 ∈ 𝑆) → ¬ (abs‘(𝐹‘𝑥)) < ((abs‘(𝐹‘𝐴)) + 𝑐)) |
| 49 | | fveq2 6191 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝐴 → (𝐹‘𝑥) = (𝐹‘𝐴)) |
| 50 | 49 | fveq2d 6195 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝐴 → (abs‘(𝐹‘𝑥)) = (abs‘(𝐹‘𝐴))) |
| 51 | 50 | adantl 482 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝐴 ∈ 𝑆) ∧ 𝑥 = 𝐴) → (abs‘(𝐹‘𝑥)) = (abs‘(𝐹‘𝐴))) |
| 52 | 14, 11 | ltaddposd 10611 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝐴 ∈ 𝑆) → (0 < 𝑐 ↔ (abs‘(𝐹‘𝐴)) < ((abs‘(𝐹‘𝐴)) + 𝑐))) |
| 53 | 18, 52 | mpbid 222 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝐴 ∈ 𝑆) → (abs‘(𝐹‘𝐴)) < ((abs‘(𝐹‘𝐴)) + 𝑐)) |
| 54 | 53 | adantr 481 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝐴 ∈ 𝑆) ∧ 𝑥 = 𝐴) → (abs‘(𝐹‘𝐴)) < ((abs‘(𝐹‘𝐴)) + 𝑐)) |
| 55 | 51, 54 | eqbrtrd 4675 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝐴 ∈ 𝑆) ∧ 𝑥 = 𝐴) → (abs‘(𝐹‘𝑥)) < ((abs‘(𝐹‘𝐴)) + 𝑐)) |
| 56 | 55 | ex 450 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝐴 ∈ 𝑆) → (𝑥 = 𝐴 → (abs‘(𝐹‘𝑥)) < ((abs‘(𝐹‘𝐴)) + 𝑐))) |
| 57 | 56 | adantlr 751 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ (𝑥 ∈ 𝑆 ∧ ((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ if(𝐴 ∈ 𝑆, ((abs‘(𝐹‘𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹‘𝑥))))) ∧ 𝐴 ∈ 𝑆) → (𝑥 = 𝐴 → (abs‘(𝐹‘𝑥)) < ((abs‘(𝐹‘𝐴)) + 𝑐))) |
| 58 | 57 | necon3bd 2808 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ (𝑥 ∈ 𝑆 ∧ ((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ if(𝐴 ∈ 𝑆, ((abs‘(𝐹‘𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹‘𝑥))))) ∧ 𝐴 ∈ 𝑆) → (¬ (abs‘(𝐹‘𝑥)) < ((abs‘(𝐹‘𝐴)) + 𝑐) → 𝑥 ≠ 𝐴)) |
| 59 | 48, 58 | mpd 15 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ (𝑥 ∈ 𝑆 ∧ ((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ if(𝐴 ∈ 𝑆, ((abs‘(𝐹‘𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹‘𝑥))))) ∧ 𝐴 ∈ 𝑆) → 𝑥 ≠ 𝐴) |
| 60 | | simprrl 804 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ (𝑥 ∈ 𝑆 ∧ ((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ if(𝐴 ∈ 𝑆, ((abs‘(𝐹‘𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹‘𝑥))))) → (abs‘(𝑥 − 𝐴)) < 𝑑) |
| 61 | 60 | adantr 481 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ (𝑥 ∈ 𝑆 ∧ ((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ if(𝐴 ∈ 𝑆, ((abs‘(𝐹‘𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹‘𝑥))))) ∧ 𝐴 ∈ 𝑆) → (abs‘(𝑥 − 𝐴)) < 𝑑) |
| 62 | 14 | adantlr 751 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ (𝑥 ∈ 𝑆 ∧ ((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ if(𝐴 ∈ 𝑆, ((abs‘(𝐹‘𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹‘𝑥))))) ∧ 𝐴 ∈ 𝑆) → 𝑐 ∈ ℝ) |
| 63 | 10 | adantlr 751 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ (𝑥 ∈ 𝑆 ∧ ((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ if(𝐴 ∈ 𝑆, ((abs‘(𝐹‘𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹‘𝑥))))) ∧ 𝐴 ∈ 𝑆) → (𝐹‘𝐴) ∈ ℂ) |
| 64 | 63 | absge0d 14183 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ (𝑥 ∈ 𝑆 ∧ ((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ if(𝐴 ∈ 𝑆, ((abs‘(𝐹‘𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹‘𝑥))))) ∧ 𝐴 ∈ 𝑆) → 0 ≤ (abs‘(𝐹‘𝐴))) |
| 65 | 11 | adantlr 751 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ (𝑥 ∈ 𝑆 ∧ ((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ if(𝐴 ∈ 𝑆, ((abs‘(𝐹‘𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹‘𝑥))))) ∧ 𝐴 ∈ 𝑆) → (abs‘(𝐹‘𝐴)) ∈ ℝ) |
| 66 | 62, 65 | addge02d 10616 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ (𝑥 ∈ 𝑆 ∧ ((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ if(𝐴 ∈ 𝑆, ((abs‘(𝐹‘𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹‘𝑥))))) ∧ 𝐴 ∈ 𝑆) → (0 ≤ (abs‘(𝐹‘𝐴)) ↔ 𝑐 ≤ ((abs‘(𝐹‘𝐴)) + 𝑐))) |
| 67 | 64, 66 | mpbid 222 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ (𝑥 ∈ 𝑆 ∧ ((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ if(𝐴 ∈ 𝑆, ((abs‘(𝐹‘𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹‘𝑥))))) ∧ 𝐴 ∈ 𝑆) → 𝑐 ≤ ((abs‘(𝐹‘𝐴)) + 𝑐)) |
| 68 | 62, 37, 41, 67, 47 | letrd 10194 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ (𝑥 ∈ 𝑆 ∧ ((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ if(𝐴 ∈ 𝑆, ((abs‘(𝐹‘𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹‘𝑥))))) ∧ 𝐴 ∈ 𝑆) → 𝑐 ≤ (abs‘(𝐹‘𝑥))) |
| 69 | 59, 61, 68 | 3jca 1242 |
. . . . 5
⊢ ((((𝜑 ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ (𝑥 ∈ 𝑆 ∧ ((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ if(𝐴 ∈ 𝑆, ((abs‘(𝐹‘𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹‘𝑥))))) ∧ 𝐴 ∈ 𝑆) → (𝑥 ≠ 𝐴 ∧ (abs‘(𝑥 − 𝐴)) < 𝑑 ∧ 𝑐 ≤ (abs‘(𝐹‘𝑥)))) |
| 70 | | simpr 477 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ (𝑥 ∈ 𝑆 ∧ ((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ if(𝐴 ∈ 𝑆, ((abs‘(𝐹‘𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹‘𝑥))))) ∧ ¬ 𝐴 ∈ 𝑆) → ¬ 𝐴 ∈ 𝑆) |
| 71 | | simpr 477 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑐 ∈ ℝ+
∧ 𝑑 ∈
ℝ+)) ∧ (𝑥 ∈ 𝑆 ∧ ((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ if(𝐴 ∈ 𝑆, ((abs‘(𝐹‘𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹‘𝑥))))) ∧ ¬ 𝐴 ∈ 𝑆) ∧ 𝑥 = 𝐴) → 𝑥 = 𝐴) |
| 72 | 27 | adantr 481 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ (𝑥 ∈ 𝑆 ∧ ((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ if(𝐴 ∈ 𝑆, ((abs‘(𝐹‘𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹‘𝑥))))) ∧ ¬ 𝐴 ∈ 𝑆) → 𝑥 ∈ 𝑆) |
| 73 | 72 | adantr 481 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑐 ∈ ℝ+
∧ 𝑑 ∈
ℝ+)) ∧ (𝑥 ∈ 𝑆 ∧ ((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ if(𝐴 ∈ 𝑆, ((abs‘(𝐹‘𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹‘𝑥))))) ∧ ¬ 𝐴 ∈ 𝑆) ∧ 𝑥 = 𝐴) → 𝑥 ∈ 𝑆) |
| 74 | 71, 73 | eqeltrrd 2702 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (𝑐 ∈ ℝ+
∧ 𝑑 ∈
ℝ+)) ∧ (𝑥 ∈ 𝑆 ∧ ((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ if(𝐴 ∈ 𝑆, ((abs‘(𝐹‘𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹‘𝑥))))) ∧ ¬ 𝐴 ∈ 𝑆) ∧ 𝑥 = 𝐴) → 𝐴 ∈ 𝑆) |
| 75 | 74 | ex 450 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ (𝑥 ∈ 𝑆 ∧ ((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ if(𝐴 ∈ 𝑆, ((abs‘(𝐹‘𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹‘𝑥))))) ∧ ¬ 𝐴 ∈ 𝑆) → (𝑥 = 𝐴 → 𝐴 ∈ 𝑆)) |
| 76 | 75 | necon3bd 2808 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ (𝑥 ∈ 𝑆 ∧ ((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ if(𝐴 ∈ 𝑆, ((abs‘(𝐹‘𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹‘𝑥))))) ∧ ¬ 𝐴 ∈ 𝑆) → (¬ 𝐴 ∈ 𝑆 → 𝑥 ≠ 𝐴)) |
| 77 | 70, 76 | mpd 15 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ (𝑥 ∈ 𝑆 ∧ ((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ if(𝐴 ∈ 𝑆, ((abs‘(𝐹‘𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹‘𝑥))))) ∧ ¬ 𝐴 ∈ 𝑆) → 𝑥 ≠ 𝐴) |
| 78 | 60 | adantr 481 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ (𝑥 ∈ 𝑆 ∧ ((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ if(𝐴 ∈ 𝑆, ((abs‘(𝐹‘𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹‘𝑥))))) ∧ ¬ 𝐴 ∈ 𝑆) → (abs‘(𝑥 − 𝐴)) < 𝑑) |
| 79 | 70 | iffalsed 4097 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ (𝑥 ∈ 𝑆 ∧ ((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ if(𝐴 ∈ 𝑆, ((abs‘(𝐹‘𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹‘𝑥))))) ∧ ¬ 𝐴 ∈ 𝑆) → if(𝐴 ∈ 𝑆, ((abs‘(𝐹‘𝐴)) + 𝑐), 𝑐) = 𝑐) |
| 80 | 79 | eqcomd 2628 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ (𝑥 ∈ 𝑆 ∧ ((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ if(𝐴 ∈ 𝑆, ((abs‘(𝐹‘𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹‘𝑥))))) ∧ ¬ 𝐴 ∈ 𝑆) → 𝑐 = if(𝐴 ∈ 𝑆, ((abs‘(𝐹‘𝐴)) + 𝑐), 𝑐)) |
| 81 | 45 | adantr 481 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ (𝑥 ∈ 𝑆 ∧ ((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ if(𝐴 ∈ 𝑆, ((abs‘(𝐹‘𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹‘𝑥))))) ∧ ¬ 𝐴 ∈ 𝑆) → if(𝐴 ∈ 𝑆, ((abs‘(𝐹‘𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹‘𝑥))) |
| 82 | 80, 81 | eqbrtrd 4675 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ (𝑥 ∈ 𝑆 ∧ ((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ if(𝐴 ∈ 𝑆, ((abs‘(𝐹‘𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹‘𝑥))))) ∧ ¬ 𝐴 ∈ 𝑆) → 𝑐 ≤ (abs‘(𝐹‘𝑥))) |
| 83 | 77, 78, 82 | 3jca 1242 |
. . . . 5
⊢ ((((𝜑 ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ (𝑥 ∈ 𝑆 ∧ ((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ if(𝐴 ∈ 𝑆, ((abs‘(𝐹‘𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹‘𝑥))))) ∧ ¬ 𝐴 ∈ 𝑆) → (𝑥 ≠ 𝐴 ∧ (abs‘(𝑥 − 𝐴)) < 𝑑 ∧ 𝑐 ≤ (abs‘(𝐹‘𝑥)))) |
| 84 | 69, 83 | pm2.61dan 832 |
. . . 4
⊢ (((𝜑 ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ (𝑥 ∈ 𝑆 ∧ ((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ if(𝐴 ∈ 𝑆, ((abs‘(𝐹‘𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹‘𝑥))))) → (𝑥 ≠ 𝐴 ∧ (abs‘(𝑥 − 𝐴)) < 𝑑 ∧ 𝑐 ≤ (abs‘(𝐹‘𝑥)))) |
| 85 | 27, 36, 84 | rspcedvd 3317 |
. . 3
⊢ (((𝜑 ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ (𝑥 ∈ 𝑆 ∧ ((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ if(𝐴 ∈ 𝑆, ((abs‘(𝐹‘𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹‘𝑥))))) → ∃𝑦 ∈ 𝑆 (𝑦 ≠ 𝐴 ∧ (abs‘(𝑦 − 𝐴)) < 𝑑 ∧ 𝑐 ≤ (abs‘(𝐹‘𝑦)))) |
| 86 | 26, 85 | rexlimddv 3035 |
. 2
⊢ ((𝜑 ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
→ ∃𝑦 ∈
𝑆 (𝑦 ≠ 𝐴 ∧ (abs‘(𝑦 − 𝐴)) < 𝑑 ∧ 𝑐 ≤ (abs‘(𝐹‘𝑦)))) |
| 87 | 86 | ralrimivva 2971 |
1
⊢ (𝜑 → ∀𝑐 ∈ ℝ+ ∀𝑑 ∈ ℝ+
∃𝑦 ∈ 𝑆 (𝑦 ≠ 𝐴 ∧ (abs‘(𝑦 − 𝐴)) < 𝑑 ∧ 𝑐 ≤ (abs‘(𝐹‘𝑦)))) |