Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unblimceq0lem Structured version   Visualization version   GIF version

Theorem unblimceq0lem 32497
Description: Lemma for unblimceq0 32498. (Contributed by Asger C. Ipsen, 12-May-2021.)
Hypotheses
Ref Expression
unblimceq0lem.0 (𝜑𝑆 ⊆ ℂ)
unblimceq0lem.1 (𝜑𝐹:𝑆⟶ℂ)
unblimceq0lem.2 (𝜑𝐴 ∈ ℂ)
unblimceq0lem.3 (𝜑 → ∀𝑏 ∈ ℝ+𝑑 ∈ ℝ+𝑥𝑆 ((abs‘(𝑥𝐴)) < 𝑑𝑏 ≤ (abs‘(𝐹𝑥))))
Assertion
Ref Expression
unblimceq0lem (𝜑 → ∀𝑐 ∈ ℝ+𝑑 ∈ ℝ+𝑦𝑆 (𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑𝑐 ≤ (abs‘(𝐹𝑦))))
Distinct variable groups:   𝐴,𝑏,𝑑,𝑥   𝑦,𝐴,𝑑,𝑥   𝐹,𝑏,𝑑,𝑥   𝑦,𝐹   𝑆,𝑏,𝑑,𝑥   𝑦,𝑆   𝜑,𝑏,𝑐,𝑑,𝑥   𝜑,𝑦,𝑐
Allowed substitution hints:   𝐴(𝑐)   𝑆(𝑐)   𝐹(𝑐)

Proof of Theorem unblimceq0lem
StepHypRef Expression
1 breq1 4656 . . . . . . . 8 (𝑏 = if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) → (𝑏 ≤ (abs‘(𝐹𝑥)) ↔ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))
21anbi2d 740 . . . . . . 7 (𝑏 = if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) → (((abs‘(𝑥𝐴)) < 𝑑𝑏 ≤ (abs‘(𝐹𝑥))) ↔ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥)))))
32rexbidv 3052 . . . . . 6 (𝑏 = if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) → (∃𝑥𝑆 ((abs‘(𝑥𝐴)) < 𝑑𝑏 ≤ (abs‘(𝐹𝑥))) ↔ ∃𝑥𝑆 ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥)))))
43ralbidv 2986 . . . . 5 (𝑏 = if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) → (∀𝑑 ∈ ℝ+𝑥𝑆 ((abs‘(𝑥𝐴)) < 𝑑𝑏 ≤ (abs‘(𝐹𝑥))) ↔ ∀𝑑 ∈ ℝ+𝑥𝑆 ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥)))))
5 unblimceq0lem.3 . . . . . 6 (𝜑 → ∀𝑏 ∈ ℝ+𝑑 ∈ ℝ+𝑥𝑆 ((abs‘(𝑥𝐴)) < 𝑑𝑏 ≤ (abs‘(𝐹𝑥))))
65adantr 481 . . . . 5 ((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → ∀𝑏 ∈ ℝ+𝑑 ∈ ℝ+𝑥𝑆 ((abs‘(𝑥𝐴)) < 𝑑𝑏 ≤ (abs‘(𝐹𝑥))))
7 unblimceq0lem.1 . . . . . . . . . . 11 (𝜑𝐹:𝑆⟶ℂ)
87ad2antrr 762 . . . . . . . . . 10 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) → 𝐹:𝑆⟶ℂ)
9 simpr 477 . . . . . . . . . 10 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) → 𝐴𝑆)
108, 9ffvelrnd 6360 . . . . . . . . 9 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) → (𝐹𝐴) ∈ ℂ)
1110abscld 14175 . . . . . . . 8 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) → (abs‘(𝐹𝐴)) ∈ ℝ)
12 simprl 794 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → 𝑐 ∈ ℝ+)
1312rpred 11872 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → 𝑐 ∈ ℝ)
1413adantr 481 . . . . . . . 8 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) → 𝑐 ∈ ℝ)
1511, 14readdcld 10069 . . . . . . 7 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) → ((abs‘(𝐹𝐴)) + 𝑐) ∈ ℝ)
1610absge0d 14183 . . . . . . . 8 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) → 0 ≤ (abs‘(𝐹𝐴)))
1712rpgt0d 11875 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → 0 < 𝑐)
1817adantr 481 . . . . . . . 8 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) → 0 < 𝑐)
1911, 14, 16, 18addgegt0d 10601 . . . . . . 7 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) → 0 < ((abs‘(𝐹𝐴)) + 𝑐))
2015, 19elrpd 11869 . . . . . 6 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) → ((abs‘(𝐹𝐴)) + 𝑐) ∈ ℝ+)
21 simplrl 800 . . . . . 6 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ¬ 𝐴𝑆) → 𝑐 ∈ ℝ+)
2220, 21ifclda 4120 . . . . 5 ((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ∈ ℝ+)
234, 6, 22rspcdva 3316 . . . 4 ((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → ∀𝑑 ∈ ℝ+𝑥𝑆 ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))
24 simprr 796 . . . 4 ((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → 𝑑 ∈ ℝ+)
25 rsp 2929 . . . 4 (∀𝑑 ∈ ℝ+𝑥𝑆 ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))) → (𝑑 ∈ ℝ+ → ∃𝑥𝑆 ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥)))))
2623, 24, 25sylc 65 . . 3 ((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → ∃𝑥𝑆 ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))
27 simprl 794 . . . 4 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) → 𝑥𝑆)
28 neeq1 2856 . . . . . 6 (𝑦 = 𝑥 → (𝑦𝐴𝑥𝐴))
29 oveq1 6657 . . . . . . . 8 (𝑦 = 𝑥 → (𝑦𝐴) = (𝑥𝐴))
3029fveq2d 6195 . . . . . . 7 (𝑦 = 𝑥 → (abs‘(𝑦𝐴)) = (abs‘(𝑥𝐴)))
3130breq1d 4663 . . . . . 6 (𝑦 = 𝑥 → ((abs‘(𝑦𝐴)) < 𝑑 ↔ (abs‘(𝑥𝐴)) < 𝑑))
32 fveq2 6191 . . . . . . . 8 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
3332fveq2d 6195 . . . . . . 7 (𝑦 = 𝑥 → (abs‘(𝐹𝑦)) = (abs‘(𝐹𝑥)))
3433breq2d 4665 . . . . . 6 (𝑦 = 𝑥 → (𝑐 ≤ (abs‘(𝐹𝑦)) ↔ 𝑐 ≤ (abs‘(𝐹𝑥))))
3528, 31, 343anbi123d 1399 . . . . 5 (𝑦 = 𝑥 → ((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑𝑐 ≤ (abs‘(𝐹𝑦))) ↔ (𝑥𝐴 ∧ (abs‘(𝑥𝐴)) < 𝑑𝑐 ≤ (abs‘(𝐹𝑥)))))
3635adantl 482 . . . 4 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝑦 = 𝑥) → ((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑𝑐 ≤ (abs‘(𝐹𝑦))) ↔ (𝑥𝐴 ∧ (abs‘(𝑥𝐴)) < 𝑑𝑐 ≤ (abs‘(𝐹𝑥)))))
3715adantlr 751 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → ((abs‘(𝐹𝐴)) + 𝑐) ∈ ℝ)
387ad2antrr 762 . . . . . . . . . . 11 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) → 𝐹:𝑆⟶ℂ)
3938, 27ffvelrnd 6360 . . . . . . . . . 10 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) → (𝐹𝑥) ∈ ℂ)
4039abscld 14175 . . . . . . . . 9 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) → (abs‘(𝐹𝑥)) ∈ ℝ)
4140adantr 481 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → (abs‘(𝐹𝑥)) ∈ ℝ)
42 simpr 477 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → 𝐴𝑆)
4342iftrued 4094 . . . . . . . . . 10 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) = ((abs‘(𝐹𝐴)) + 𝑐))
4443eqcomd 2628 . . . . . . . . 9 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → ((abs‘(𝐹𝐴)) + 𝑐) = if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐))
45 simprrr 805 . . . . . . . . . 10 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) → if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥)))
4645adantr 481 . . . . . . . . 9 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥)))
4744, 46eqbrtrd 4675 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → ((abs‘(𝐹𝐴)) + 𝑐) ≤ (abs‘(𝐹𝑥)))
4837, 41, 47lensymd 10188 . . . . . . 7 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → ¬ (abs‘(𝐹𝑥)) < ((abs‘(𝐹𝐴)) + 𝑐))
49 fveq2 6191 . . . . . . . . . . . . 13 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
5049fveq2d 6195 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (abs‘(𝐹𝑥)) = (abs‘(𝐹𝐴)))
5150adantl 482 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) ∧ 𝑥 = 𝐴) → (abs‘(𝐹𝑥)) = (abs‘(𝐹𝐴)))
5214, 11ltaddposd 10611 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) → (0 < 𝑐 ↔ (abs‘(𝐹𝐴)) < ((abs‘(𝐹𝐴)) + 𝑐)))
5318, 52mpbid 222 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) → (abs‘(𝐹𝐴)) < ((abs‘(𝐹𝐴)) + 𝑐))
5453adantr 481 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) ∧ 𝑥 = 𝐴) → (abs‘(𝐹𝐴)) < ((abs‘(𝐹𝐴)) + 𝑐))
5551, 54eqbrtrd 4675 . . . . . . . . . 10 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) ∧ 𝑥 = 𝐴) → (abs‘(𝐹𝑥)) < ((abs‘(𝐹𝐴)) + 𝑐))
5655ex 450 . . . . . . . . 9 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) → (𝑥 = 𝐴 → (abs‘(𝐹𝑥)) < ((abs‘(𝐹𝐴)) + 𝑐)))
5756adantlr 751 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → (𝑥 = 𝐴 → (abs‘(𝐹𝑥)) < ((abs‘(𝐹𝐴)) + 𝑐)))
5857necon3bd 2808 . . . . . . 7 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → (¬ (abs‘(𝐹𝑥)) < ((abs‘(𝐹𝐴)) + 𝑐) → 𝑥𝐴))
5948, 58mpd 15 . . . . . 6 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → 𝑥𝐴)
60 simprrl 804 . . . . . . 7 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) → (abs‘(𝑥𝐴)) < 𝑑)
6160adantr 481 . . . . . 6 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → (abs‘(𝑥𝐴)) < 𝑑)
6214adantlr 751 . . . . . . 7 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → 𝑐 ∈ ℝ)
6310adantlr 751 . . . . . . . . 9 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → (𝐹𝐴) ∈ ℂ)
6463absge0d 14183 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → 0 ≤ (abs‘(𝐹𝐴)))
6511adantlr 751 . . . . . . . . 9 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → (abs‘(𝐹𝐴)) ∈ ℝ)
6662, 65addge02d 10616 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → (0 ≤ (abs‘(𝐹𝐴)) ↔ 𝑐 ≤ ((abs‘(𝐹𝐴)) + 𝑐)))
6764, 66mpbid 222 . . . . . . 7 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → 𝑐 ≤ ((abs‘(𝐹𝐴)) + 𝑐))
6862, 37, 41, 67, 47letrd 10194 . . . . . 6 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → 𝑐 ≤ (abs‘(𝐹𝑥)))
6959, 61, 683jca 1242 . . . . 5 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → (𝑥𝐴 ∧ (abs‘(𝑥𝐴)) < 𝑑𝑐 ≤ (abs‘(𝐹𝑥))))
70 simpr 477 . . . . . . 7 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) → ¬ 𝐴𝑆)
71 simpr 477 . . . . . . . . . 10 (((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) ∧ 𝑥 = 𝐴) → 𝑥 = 𝐴)
7227adantr 481 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) → 𝑥𝑆)
7372adantr 481 . . . . . . . . . 10 (((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) ∧ 𝑥 = 𝐴) → 𝑥𝑆)
7471, 73eqeltrrd 2702 . . . . . . . . 9 (((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) ∧ 𝑥 = 𝐴) → 𝐴𝑆)
7574ex 450 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) → (𝑥 = 𝐴𝐴𝑆))
7675necon3bd 2808 . . . . . . 7 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) → (¬ 𝐴𝑆𝑥𝐴))
7770, 76mpd 15 . . . . . 6 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) → 𝑥𝐴)
7860adantr 481 . . . . . 6 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) → (abs‘(𝑥𝐴)) < 𝑑)
7970iffalsed 4097 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) → if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) = 𝑐)
8079eqcomd 2628 . . . . . . 7 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) → 𝑐 = if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐))
8145adantr 481 . . . . . . 7 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) → if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥)))
8280, 81eqbrtrd 4675 . . . . . 6 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) → 𝑐 ≤ (abs‘(𝐹𝑥)))
8377, 78, 823jca 1242 . . . . 5 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) → (𝑥𝐴 ∧ (abs‘(𝑥𝐴)) < 𝑑𝑐 ≤ (abs‘(𝐹𝑥))))
8469, 83pm2.61dan 832 . . . 4 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) → (𝑥𝐴 ∧ (abs‘(𝑥𝐴)) < 𝑑𝑐 ≤ (abs‘(𝐹𝑥))))
8527, 36, 84rspcedvd 3317 . . 3 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) → ∃𝑦𝑆 (𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑𝑐 ≤ (abs‘(𝐹𝑦))))
8626, 85rexlimddv 3035 . 2 ((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → ∃𝑦𝑆 (𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑𝑐 ≤ (abs‘(𝐹𝑦))))
8786ralrimivva 2971 1 (𝜑 → ∀𝑐 ∈ ℝ+𝑑 ∈ ℝ+𝑦𝑆 (𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑𝑐 ≤ (abs‘(𝐹𝑦))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  wss 3574  ifcif 4086   class class class wbr 4653  wf 5884  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936   + caddc 9939   < clt 10074  cle 10075  cmin 10266  +crp 11832  abscabs 13974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976
This theorem is referenced by:  unblimceq0  32498
  Copyright terms: Public domain W3C validator