| Step | Hyp | Ref
| Expression |
| 1 | | 1rp 11836 |
. . . . . . . . 9
⊢ 1 ∈
ℝ+ |
| 2 | 1 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → 1 ∈
ℝ+) |
| 3 | | breq2 4657 |
. . . . . . . . . . . . 13
⊢ (𝑒 = 1 → ((abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒 ↔ (abs‘((𝐹‘𝑧) − 𝑦)) < 1)) |
| 4 | 3 | imbi2d 330 |
. . . . . . . . . . . 12
⊢ (𝑒 = 1 → (((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒) ↔ ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 1))) |
| 5 | 4 | ralbidv 2986 |
. . . . . . . . . . 11
⊢ (𝑒 = 1 → (∀𝑧 ∈ 𝑆 ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒) ↔ ∀𝑧 ∈ 𝑆 ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 1))) |
| 6 | 5 | rexbidv 3052 |
. . . . . . . . . 10
⊢ (𝑒 = 1 → (∃𝑐 ∈ ℝ+
∀𝑧 ∈ 𝑆 ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒) ↔ ∃𝑐 ∈ ℝ+ ∀𝑧 ∈ 𝑆 ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 1))) |
| 7 | 6 | notbid 308 |
. . . . . . . . 9
⊢ (𝑒 = 1 → (¬ ∃𝑐 ∈ ℝ+
∀𝑧 ∈ 𝑆 ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒) ↔ ¬ ∃𝑐 ∈ ℝ+ ∀𝑧 ∈ 𝑆 ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 1))) |
| 8 | 7 | adantl 482 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑒 = 1) → (¬ ∃𝑐 ∈ ℝ+ ∀𝑧 ∈ 𝑆 ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒) ↔ ¬ ∃𝑐 ∈ ℝ+ ∀𝑧 ∈ 𝑆 ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 1))) |
| 9 | | simprr1 1109 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → 𝑧 ≠ 𝐴) |
| 10 | | simprr2 1110 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → (abs‘(𝑧 − 𝐴)) < 𝑐) |
| 11 | 9, 10 | jca 554 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐)) |
| 12 | | 1red 10055 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → 1 ∈
ℝ) |
| 13 | 12 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → 1 ∈
ℝ) |
| 14 | | unblimceq0.1 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐹:𝑆⟶ℂ) |
| 15 | 14 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → 𝐹:𝑆⟶ℂ) |
| 16 | 15 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → 𝐹:𝑆⟶ℂ) |
| 17 | | simprl 794 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → 𝑧 ∈ 𝑆) |
| 18 | 16, 17 | ffvelrnd 6360 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → (𝐹‘𝑧) ∈ ℂ) |
| 19 | 18 | abscld 14175 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → (abs‘(𝐹‘𝑧)) ∈ ℝ) |
| 20 | | simplr 792 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → 𝑦 ∈
ℂ) |
| 21 | 20 | abscld 14175 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) →
(abs‘𝑦) ∈
ℝ) |
| 22 | 21 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → (abs‘𝑦) ∈ ℝ) |
| 23 | 19, 22 | resubcld 10458 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → ((abs‘(𝐹‘𝑧)) − (abs‘𝑦)) ∈ ℝ) |
| 24 | 20 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → 𝑦 ∈ ℂ) |
| 25 | 18, 24 | subcld 10392 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → ((𝐹‘𝑧) − 𝑦) ∈ ℂ) |
| 26 | 25 | abscld 14175 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → (abs‘((𝐹‘𝑧) − 𝑦)) ∈ ℝ) |
| 27 | | 1cnd 10056 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → 1 ∈
ℂ) |
| 28 | 22 | recnd 10068 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → (abs‘𝑦) ∈ ℂ) |
| 29 | 27, 28 | pncand 10393 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → ((1 + (abs‘𝑦)) − (abs‘𝑦)) = 1) |
| 30 | 29 | eqcomd 2628 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → 1 = ((1 + (abs‘𝑦)) − (abs‘𝑦))) |
| 31 | | simprr3 1111 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))) |
| 32 | 12, 21 | readdcld 10069 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → (1 +
(abs‘𝑦)) ∈
ℝ) |
| 33 | 32 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → (1 + (abs‘𝑦)) ∈
ℝ) |
| 34 | 33, 19, 22 | lesub1d 10634 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → ((1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧)) ↔ ((1 + (abs‘𝑦)) − (abs‘𝑦)) ≤ ((abs‘(𝐹‘𝑧)) − (abs‘𝑦)))) |
| 35 | 31, 34 | mpbid 222 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → ((1 + (abs‘𝑦)) − (abs‘𝑦)) ≤ ((abs‘(𝐹‘𝑧)) − (abs‘𝑦))) |
| 36 | 30, 35 | eqbrtrd 4675 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → 1 ≤ ((abs‘(𝐹‘𝑧)) − (abs‘𝑦))) |
| 37 | 18, 24 | abs2difd 14196 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → ((abs‘(𝐹‘𝑧)) − (abs‘𝑦)) ≤ (abs‘((𝐹‘𝑧) − 𝑦))) |
| 38 | 13, 23, 26, 36, 37 | letrd 10194 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → 1 ≤ (abs‘((𝐹‘𝑧) − 𝑦))) |
| 39 | 13, 26 | lenltd 10183 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → (1 ≤ (abs‘((𝐹‘𝑧) − 𝑦)) ↔ ¬ (abs‘((𝐹‘𝑧) − 𝑦)) < 1)) |
| 40 | 38, 39 | mpbid 222 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → ¬ (abs‘((𝐹‘𝑧) − 𝑦)) < 1) |
| 41 | 11, 40 | jca 554 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) ∧ ¬ (abs‘((𝐹‘𝑧) − 𝑦)) < 1)) |
| 42 | | pm4.61 442 |
. . . . . . . . . . . . 13
⊢ (¬
((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 1) ↔ ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) ∧ ¬ (abs‘((𝐹‘𝑧) − 𝑦)) < 1)) |
| 43 | 41, 42 | sylibr 224 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → ¬ ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 1)) |
| 44 | | breq2 4657 |
. . . . . . . . . . . . . . 15
⊢ (𝑑 = 𝑐 → ((abs‘(𝑧 − 𝐴)) < 𝑑 ↔ (abs‘(𝑧 − 𝐴)) < 𝑐)) |
| 45 | 44 | 3anbi2d 1404 |
. . . . . . . . . . . . . 14
⊢ (𝑑 = 𝑐 → ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑑 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))) ↔ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) |
| 46 | 45 | rexbidv 3052 |
. . . . . . . . . . . . 13
⊢ (𝑑 = 𝑐 → (∃𝑧 ∈ 𝑆 (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑑 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))) ↔ ∃𝑧 ∈ 𝑆 (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) |
| 47 | | breq1 4656 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 = (1 + (abs‘𝑦)) → (𝑎 ≤ (abs‘(𝐹‘𝑧)) ↔ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧)))) |
| 48 | 47 | 3anbi3d 1405 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = (1 + (abs‘𝑦)) → ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑑 ∧ 𝑎 ≤ (abs‘(𝐹‘𝑧))) ↔ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑑 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) |
| 49 | 48 | rexbidv 3052 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = (1 + (abs‘𝑦)) → (∃𝑧 ∈ 𝑆 (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑑 ∧ 𝑎 ≤ (abs‘(𝐹‘𝑧))) ↔ ∃𝑧 ∈ 𝑆 (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑑 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) |
| 50 | 49 | ralbidv 2986 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = (1 + (abs‘𝑦)) → (∀𝑑 ∈ ℝ+
∃𝑧 ∈ 𝑆 (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑑 ∧ 𝑎 ≤ (abs‘(𝐹‘𝑧))) ↔ ∀𝑑 ∈ ℝ+ ∃𝑧 ∈ 𝑆 (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑑 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) |
| 51 | | unblimceq0.0 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 52 | | unblimceq0.2 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 53 | | unblimceq0.3 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ∀𝑏 ∈ ℝ+ ∀𝑑 ∈ ℝ+
∃𝑥 ∈ 𝑆 ((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ 𝑏 ≤ (abs‘(𝐹‘𝑥)))) |
| 54 | 51, 14, 52, 53 | unblimceq0lem 32497 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀𝑎 ∈ ℝ+ ∀𝑑 ∈ ℝ+
∃𝑧 ∈ 𝑆 (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑑 ∧ 𝑎 ≤ (abs‘(𝐹‘𝑧)))) |
| 55 | 54 | ad2antrr 762 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) →
∀𝑎 ∈
ℝ+ ∀𝑑 ∈ ℝ+ ∃𝑧 ∈ 𝑆 (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑑 ∧ 𝑎 ≤ (abs‘(𝐹‘𝑧)))) |
| 56 | | 0lt1 10550 |
. . . . . . . . . . . . . . . . 17
⊢ 0 <
1 |
| 57 | 56 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → 0 <
1) |
| 58 | 20 | absge0d 14183 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → 0 ≤
(abs‘𝑦)) |
| 59 | 12, 21, 57, 58 | addgtge0d 32496 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → 0 < (1
+ (abs‘𝑦))) |
| 60 | 32, 59 | elrpd 11869 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → (1 +
(abs‘𝑦)) ∈
ℝ+) |
| 61 | 50, 55, 60 | rspcdva 3316 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) →
∀𝑑 ∈
ℝ+ ∃𝑧 ∈ 𝑆 (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑑 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧)))) |
| 62 | | simpr 477 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → 𝑐 ∈
ℝ+) |
| 63 | 46, 61, 62 | rspcdva 3316 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) →
∃𝑧 ∈ 𝑆 (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧)))) |
| 64 | 43, 63 | reximddv 3018 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) →
∃𝑧 ∈ 𝑆 ¬ ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 1)) |
| 65 | | rexnal 2995 |
. . . . . . . . . . 11
⊢
(∃𝑧 ∈
𝑆 ¬ ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 1) ↔ ¬ ∀𝑧 ∈ 𝑆 ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 1)) |
| 66 | 64, 65 | sylib 208 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → ¬
∀𝑧 ∈ 𝑆 ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 1)) |
| 67 | 66 | ralrimiva 2966 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → ∀𝑐 ∈ ℝ+
¬ ∀𝑧 ∈
𝑆 ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 1)) |
| 68 | | ralnex 2992 |
. . . . . . . . 9
⊢
(∀𝑐 ∈
ℝ+ ¬ ∀𝑧 ∈ 𝑆 ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 1) ↔ ¬ ∃𝑐 ∈ ℝ+
∀𝑧 ∈ 𝑆 ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 1)) |
| 69 | 67, 68 | sylib 208 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → ¬ ∃𝑐 ∈ ℝ+
∀𝑧 ∈ 𝑆 ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 1)) |
| 70 | 2, 8, 69 | rspcedvd 3317 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → ∃𝑒 ∈ ℝ+
¬ ∃𝑐 ∈
ℝ+ ∀𝑧 ∈ 𝑆 ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒)) |
| 71 | | rexnal 2995 |
. . . . . . 7
⊢
(∃𝑒 ∈
ℝ+ ¬ ∃𝑐 ∈ ℝ+ ∀𝑧 ∈ 𝑆 ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒) ↔ ¬ ∀𝑒 ∈ ℝ+ ∃𝑐 ∈ ℝ+
∀𝑧 ∈ 𝑆 ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒)) |
| 72 | 70, 71 | sylib 208 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → ¬ ∀𝑒 ∈ ℝ+
∃𝑐 ∈
ℝ+ ∀𝑧 ∈ 𝑆 ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒)) |
| 73 | 72 | ex 450 |
. . . . 5
⊢ (𝜑 → (𝑦 ∈ ℂ → ¬ ∀𝑒 ∈ ℝ+
∃𝑐 ∈
ℝ+ ∀𝑧 ∈ 𝑆 ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒))) |
| 74 | | imnan 438 |
. . . . 5
⊢ ((𝑦 ∈ ℂ → ¬
∀𝑒 ∈
ℝ+ ∃𝑐 ∈ ℝ+ ∀𝑧 ∈ 𝑆 ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒)) ↔ ¬ (𝑦 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+
∃𝑐 ∈
ℝ+ ∀𝑧 ∈ 𝑆 ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒))) |
| 75 | 73, 74 | sylib 208 |
. . . 4
⊢ (𝜑 → ¬ (𝑦 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+
∃𝑐 ∈
ℝ+ ∀𝑧 ∈ 𝑆 ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒))) |
| 76 | 14, 51, 52 | ellimc3 23643 |
. . . 4
⊢ (𝜑 → (𝑦 ∈ (𝐹 limℂ 𝐴) ↔ (𝑦 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+
∃𝑐 ∈
ℝ+ ∀𝑧 ∈ 𝑆 ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒)))) |
| 77 | 75, 76 | mtbird 315 |
. . 3
⊢ (𝜑 → ¬ 𝑦 ∈ (𝐹 limℂ 𝐴)) |
| 78 | 77 | alrimiv 1855 |
. 2
⊢ (𝜑 → ∀𝑦 ¬ 𝑦 ∈ (𝐹 limℂ 𝐴)) |
| 79 | | eq0 3929 |
. 2
⊢ ((𝐹 limℂ 𝐴) = ∅ ↔ ∀𝑦 ¬ 𝑦 ∈ (𝐹 limℂ 𝐴)) |
| 80 | 78, 79 | sylibr 224 |
1
⊢ (𝜑 → (𝐹 limℂ 𝐴) = ∅) |