![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > usgr1v0e | Structured version Visualization version GIF version |
Description: The size of a (finite) simple graph with 1 vertex is 0. (Contributed by Alexander van der Vekens, 5-Jan-2018.) (Revised by AV, 22-Oct-2020.) |
Ref | Expression |
---|---|
fusgredgfi.v | ⊢ 𝑉 = (Vtx‘𝐺) |
fusgredgfi.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
usgr1v0e | ⊢ ((𝐺 ∈ USGraph ∧ (#‘𝑉) = 1) → (#‘𝐸) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 473 | . . . . . . 7 ⊢ ((𝐺 ∈ USGraph ∧ 𝑉 = {𝑣}) → 𝐺 ∈ USGraph ) | |
2 | vex 3203 | . . . . . . . . 9 ⊢ 𝑣 ∈ V | |
3 | 2 | a1i 11 | . . . . . . . 8 ⊢ ((𝐺 ∈ USGraph ∧ 𝑉 = {𝑣}) → 𝑣 ∈ V) |
4 | fusgredgfi.v | . . . . . . . . . . 11 ⊢ 𝑉 = (Vtx‘𝐺) | |
5 | 4 | eqeq1i 2627 | . . . . . . . . . 10 ⊢ (𝑉 = {𝑣} ↔ (Vtx‘𝐺) = {𝑣}) |
6 | 5 | biimpi 206 | . . . . . . . . 9 ⊢ (𝑉 = {𝑣} → (Vtx‘𝐺) = {𝑣}) |
7 | 6 | adantl 482 | . . . . . . . 8 ⊢ ((𝐺 ∈ USGraph ∧ 𝑉 = {𝑣}) → (Vtx‘𝐺) = {𝑣}) |
8 | usgr1vr 26147 | . . . . . . . . 9 ⊢ ((𝑣 ∈ V ∧ (Vtx‘𝐺) = {𝑣}) → (𝐺 ∈ USGraph → (iEdg‘𝐺) = ∅)) | |
9 | 8 | 3adant1 1079 | . . . . . . . 8 ⊢ ((𝐺 ∈ USGraph ∧ 𝑣 ∈ V ∧ (Vtx‘𝐺) = {𝑣}) → (𝐺 ∈ USGraph → (iEdg‘𝐺) = ∅)) |
10 | 1, 3, 7, 9 | syl3anc 1326 | . . . . . . 7 ⊢ ((𝐺 ∈ USGraph ∧ 𝑉 = {𝑣}) → (𝐺 ∈ USGraph → (iEdg‘𝐺) = ∅)) |
11 | 1, 10 | mpd 15 | . . . . . 6 ⊢ ((𝐺 ∈ USGraph ∧ 𝑉 = {𝑣}) → (iEdg‘𝐺) = ∅) |
12 | fusgredgfi.e | . . . . . . . 8 ⊢ 𝐸 = (Edg‘𝐺) | |
13 | 12 | eqeq1i 2627 | . . . . . . 7 ⊢ (𝐸 = ∅ ↔ (Edg‘𝐺) = ∅) |
14 | usgruhgr 26078 | . . . . . . . . 9 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ UHGraph ) | |
15 | uhgriedg0edg0 26022 | . . . . . . . . 9 ⊢ (𝐺 ∈ UHGraph → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅)) | |
16 | 14, 15 | syl 17 | . . . . . . . 8 ⊢ (𝐺 ∈ USGraph → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅)) |
17 | 16 | adantr 481 | . . . . . . 7 ⊢ ((𝐺 ∈ USGraph ∧ 𝑉 = {𝑣}) → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅)) |
18 | 13, 17 | syl5bb 272 | . . . . . 6 ⊢ ((𝐺 ∈ USGraph ∧ 𝑉 = {𝑣}) → (𝐸 = ∅ ↔ (iEdg‘𝐺) = ∅)) |
19 | 11, 18 | mpbird 247 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ 𝑉 = {𝑣}) → 𝐸 = ∅) |
20 | 19 | ex 450 | . . . 4 ⊢ (𝐺 ∈ USGraph → (𝑉 = {𝑣} → 𝐸 = ∅)) |
21 | 20 | exlimdv 1861 | . . 3 ⊢ (𝐺 ∈ USGraph → (∃𝑣 𝑉 = {𝑣} → 𝐸 = ∅)) |
22 | fvex 6201 | . . . . 5 ⊢ (Vtx‘𝐺) ∈ V | |
23 | 4, 22 | eqeltri 2697 | . . . 4 ⊢ 𝑉 ∈ V |
24 | hash1snb 13207 | . . . 4 ⊢ (𝑉 ∈ V → ((#‘𝑉) = 1 ↔ ∃𝑣 𝑉 = {𝑣})) | |
25 | 23, 24 | mp1i 13 | . . 3 ⊢ (𝐺 ∈ USGraph → ((#‘𝑉) = 1 ↔ ∃𝑣 𝑉 = {𝑣})) |
26 | fvex 6201 | . . . . 5 ⊢ (Edg‘𝐺) ∈ V | |
27 | 12, 26 | eqeltri 2697 | . . . 4 ⊢ 𝐸 ∈ V |
28 | hasheq0 13154 | . . . 4 ⊢ (𝐸 ∈ V → ((#‘𝐸) = 0 ↔ 𝐸 = ∅)) | |
29 | 27, 28 | mp1i 13 | . . 3 ⊢ (𝐺 ∈ USGraph → ((#‘𝐸) = 0 ↔ 𝐸 = ∅)) |
30 | 21, 25, 29 | 3imtr4d 283 | . 2 ⊢ (𝐺 ∈ USGraph → ((#‘𝑉) = 1 → (#‘𝐸) = 0)) |
31 | 30 | imp 445 | 1 ⊢ ((𝐺 ∈ USGraph ∧ (#‘𝑉) = 1) → (#‘𝐸) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∃wex 1704 ∈ wcel 1990 Vcvv 3200 ∅c0 3915 {csn 4177 ‘cfv 5888 0cc0 9936 1c1 9937 #chash 13117 Vtxcvtx 25874 iEdgciedg 25875 Edgcedg 25939 UHGraph cuhgr 25951 USGraph cusgr 26044 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-card 8765 df-cda 8990 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-n0 11293 df-xnn0 11364 df-z 11378 df-uz 11688 df-fz 12327 df-hash 13118 df-edg 25940 df-uhgr 25953 df-upgr 25977 df-uspgr 26045 df-usgr 26046 |
This theorem is referenced by: cusgrsizeindb1 26346 |
Copyright terms: Public domain | W3C validator |