MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgrstrrepe Structured version   Visualization version   GIF version

Theorem usgrstrrepe 26127
Description: Replacing (or adding) the edges (between elements of the base set) of an extensible structure results in a simple graph. Instead of requiring (𝜑𝐺 Struct 𝑋), it would be sufficient to require (𝜑 → Fun (𝐺 ∖ {∅})) and (𝜑𝐺 ∈ V). (Contributed by AV, 13-Nov-2021.) (Proof shortened by AV, 16-Nov-2021.)
Hypotheses
Ref Expression
usgrstrrepe.v 𝑉 = (Base‘𝐺)
usgrstrrepe.i 𝐼 = (.ef‘ndx)
usgrstrrepe.s (𝜑𝐺 Struct 𝑋)
usgrstrrepe.b (𝜑 → (Base‘ndx) ∈ dom 𝐺)
usgrstrrepe.w (𝜑𝐸𝑊)
usgrstrrepe.e (𝜑𝐸:dom 𝐸1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2})
Assertion
Ref Expression
usgrstrrepe (𝜑 → (𝐺 sSet ⟨𝐼, 𝐸⟩) ∈ USGraph )
Distinct variable groups:   𝑥,𝐺   𝑥,𝐸   𝑥,𝐼   𝑥,𝑉   𝜑,𝑥
Allowed substitution hints:   𝑊(𝑥)   𝑋(𝑥)

Proof of Theorem usgrstrrepe
StepHypRef Expression
1 usgrstrrepe.e . . . 4 (𝜑𝐸:dom 𝐸1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2})
2 usgrstrrepe.i . . . . . . . . 9 𝐼 = (.ef‘ndx)
3 usgrstrrepe.s . . . . . . . . 9 (𝜑𝐺 Struct 𝑋)
4 usgrstrrepe.b . . . . . . . . 9 (𝜑 → (Base‘ndx) ∈ dom 𝐺)
5 usgrstrrepe.w . . . . . . . . 9 (𝜑𝐸𝑊)
62, 3, 4, 5setsvtx 25927 . . . . . . . 8 (𝜑 → (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) = (Base‘𝐺))
7 usgrstrrepe.v . . . . . . . 8 𝑉 = (Base‘𝐺)
86, 7syl6eqr 2674 . . . . . . 7 (𝜑 → (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) = 𝑉)
98pweqd 4163 . . . . . 6 (𝜑 → 𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) = 𝒫 𝑉)
109rabeqdv 3194 . . . . 5 (𝜑 → {𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) ∣ (#‘𝑥) = 2} = {𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2})
11 f1eq3 6098 . . . . 5 ({𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) ∣ (#‘𝑥) = 2} = {𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2} → (𝐸:dom 𝐸1-1→{𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) ∣ (#‘𝑥) = 2} ↔ 𝐸:dom 𝐸1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2}))
1210, 11syl 17 . . . 4 (𝜑 → (𝐸:dom 𝐸1-1→{𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) ∣ (#‘𝑥) = 2} ↔ 𝐸:dom 𝐸1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2}))
131, 12mpbird 247 . . 3 (𝜑𝐸:dom 𝐸1-1→{𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) ∣ (#‘𝑥) = 2})
142, 3, 4, 5setsiedg 25928 . . . 4 (𝜑 → (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) = 𝐸)
1514dmeqd 5326 . . . 4 (𝜑 → dom (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) = dom 𝐸)
16 eqidd 2623 . . . 4 (𝜑 → {𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) ∣ (#‘𝑥) = 2} = {𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) ∣ (#‘𝑥) = 2})
1714, 15, 16f1eq123d 6131 . . 3 (𝜑 → ((iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩)):dom (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩))–1-1→{𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) ∣ (#‘𝑥) = 2} ↔ 𝐸:dom 𝐸1-1→{𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) ∣ (#‘𝑥) = 2}))
1813, 17mpbird 247 . 2 (𝜑 → (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩)):dom (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩))–1-1→{𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) ∣ (#‘𝑥) = 2})
19 ovex 6678 . . 3 (𝐺 sSet ⟨𝐼, 𝐸⟩) ∈ V
20 eqid 2622 . . . 4 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) = (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩))
21 eqid 2622 . . . 4 (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) = (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩))
2220, 21isusgrs 26051 . . 3 ((𝐺 sSet ⟨𝐼, 𝐸⟩) ∈ V → ((𝐺 sSet ⟨𝐼, 𝐸⟩) ∈ USGraph ↔ (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩)):dom (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩))–1-1→{𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) ∣ (#‘𝑥) = 2}))
2319, 22mp1i 13 . 2 (𝜑 → ((𝐺 sSet ⟨𝐼, 𝐸⟩) ∈ USGraph ↔ (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩)):dom (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩))–1-1→{𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) ∣ (#‘𝑥) = 2}))
2418, 23mpbird 247 1 (𝜑 → (𝐺 sSet ⟨𝐼, 𝐸⟩) ∈ USGraph )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1483  wcel 1990  {crab 2916  Vcvv 3200  𝒫 cpw 4158  cop 4183   class class class wbr 4653  dom cdm 5114  1-1wf1 5885  cfv 5888  (class class class)co 6650  2c2 11070  #chash 13117   Struct cstr 15853  ndxcnx 15854   sSet csts 15855  Basecbs 15857  .efcedgf 25867  Vtxcvtx 25874  iEdgciedg 25875   USGraph cusgr 26044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-edgf 25868  df-vtx 25876  df-iedg 25877  df-usgr 26046
This theorem is referenced by:  structtousgr  26341
  Copyright terms: Public domain W3C validator