Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uzfissfz Structured version   Visualization version   GIF version

Theorem uzfissfz 39542
Description: For any finite subset of the upper integers, there is a finite set of sequential integers that includes it. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
uzfissfz.m (𝜑𝑀 ∈ ℤ)
uzfissfz.z 𝑍 = (ℤ𝑀)
uzfissfz.a (𝜑𝐴𝑍)
uzfissfz.fi (𝜑𝐴 ∈ Fin)
Assertion
Ref Expression
uzfissfz (𝜑 → ∃𝑘𝑍 𝐴 ⊆ (𝑀...𝑘))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑀   𝑘,𝑍
Allowed substitution hint:   𝜑(𝑘)

Proof of Theorem uzfissfz
Dummy variables 𝑗 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uzfissfz.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
2 uzid 11702 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
31, 2syl 17 . . . . 5 (𝜑𝑀 ∈ (ℤ𝑀))
4 uzfissfz.z . . . . . . 7 𝑍 = (ℤ𝑀)
54a1i 11 . . . . . 6 (𝜑𝑍 = (ℤ𝑀))
65eqcomd 2628 . . . . 5 (𝜑 → (ℤ𝑀) = 𝑍)
73, 6eleqtrd 2703 . . . 4 (𝜑𝑀𝑍)
87adantr 481 . . 3 ((𝜑𝐴 = ∅) → 𝑀𝑍)
9 id 22 . . . . 5 (𝐴 = ∅ → 𝐴 = ∅)
10 0ss 3972 . . . . . 6 ∅ ⊆ (𝑀...𝑀)
1110a1i 11 . . . . 5 (𝐴 = ∅ → ∅ ⊆ (𝑀...𝑀))
129, 11eqsstrd 3639 . . . 4 (𝐴 = ∅ → 𝐴 ⊆ (𝑀...𝑀))
1312adantl 482 . . 3 ((𝜑𝐴 = ∅) → 𝐴 ⊆ (𝑀...𝑀))
14 oveq2 6658 . . . . 5 (𝑘 = 𝑀 → (𝑀...𝑘) = (𝑀...𝑀))
1514sseq2d 3633 . . . 4 (𝑘 = 𝑀 → (𝐴 ⊆ (𝑀...𝑘) ↔ 𝐴 ⊆ (𝑀...𝑀)))
1615rspcev 3309 . . 3 ((𝑀𝑍𝐴 ⊆ (𝑀...𝑀)) → ∃𝑘𝑍 𝐴 ⊆ (𝑀...𝑘))
178, 13, 16syl2anc 693 . 2 ((𝜑𝐴 = ∅) → ∃𝑘𝑍 𝐴 ⊆ (𝑀...𝑘))
18 uzfissfz.a . . . . 5 (𝜑𝐴𝑍)
1918adantr 481 . . . 4 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝐴𝑍)
20 uzssz 11707 . . . . . . . . 9 (ℤ𝑀) ⊆ ℤ
214, 20eqsstri 3635 . . . . . . . 8 𝑍 ⊆ ℤ
2221a1i 11 . . . . . . 7 (𝜑𝑍 ⊆ ℤ)
2318, 22sstrd 3613 . . . . . 6 (𝜑𝐴 ⊆ ℤ)
2423adantr 481 . . . . 5 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝐴 ⊆ ℤ)
259necon3bi 2820 . . . . . 6 𝐴 = ∅ → 𝐴 ≠ ∅)
2625adantl 482 . . . . 5 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝐴 ≠ ∅)
27 uzfissfz.fi . . . . . 6 (𝜑𝐴 ∈ Fin)
2827adantr 481 . . . . 5 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝐴 ∈ Fin)
29 suprfinzcl 11492 . . . . 5 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → sup(𝐴, ℝ, < ) ∈ 𝐴)
3024, 26, 28, 29syl3anc 1326 . . . 4 ((𝜑 ∧ ¬ 𝐴 = ∅) → sup(𝐴, ℝ, < ) ∈ 𝐴)
3119, 30sseldd 3604 . . 3 ((𝜑 ∧ ¬ 𝐴 = ∅) → sup(𝐴, ℝ, < ) ∈ 𝑍)
321ad2antrr 762 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑗𝐴) → 𝑀 ∈ ℤ)
3321, 31sseldi 3601 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐴 = ∅) → sup(𝐴, ℝ, < ) ∈ ℤ)
3433adantr 481 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑗𝐴) → sup(𝐴, ℝ, < ) ∈ ℤ)
3524sselda 3603 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑗𝐴) → 𝑗 ∈ ℤ)
3632, 34, 353jca 1242 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑗𝐴) → (𝑀 ∈ ℤ ∧ sup(𝐴, ℝ, < ) ∈ ℤ ∧ 𝑗 ∈ ℤ))
3718sselda 3603 . . . . . . . . . 10 ((𝜑𝑗𝐴) → 𝑗𝑍)
384a1i 11 . . . . . . . . . 10 ((𝜑𝑗𝐴) → 𝑍 = (ℤ𝑀))
3937, 38eleqtrd 2703 . . . . . . . . 9 ((𝜑𝑗𝐴) → 𝑗 ∈ (ℤ𝑀))
40 eluzle 11700 . . . . . . . . 9 (𝑗 ∈ (ℤ𝑀) → 𝑀𝑗)
4139, 40syl 17 . . . . . . . 8 ((𝜑𝑗𝐴) → 𝑀𝑗)
4241adantlr 751 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑗𝐴) → 𝑀𝑗)
43 zssre 11384 . . . . . . . . . 10 ℤ ⊆ ℝ
4423, 43syl6ss 3615 . . . . . . . . 9 (𝜑𝐴 ⊆ ℝ)
4544ad2antrr 762 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑗𝐴) → 𝐴 ⊆ ℝ)
4626adantr 481 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑗𝐴) → 𝐴 ≠ ∅)
47 fimaxre2 10969 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
4844, 27, 47syl2anc 693 . . . . . . . . 9 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
4948ad2antrr 762 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑗𝐴) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
50 simpr 477 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑗𝐴) → 𝑗𝐴)
51 suprub 10984 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ 𝑗𝐴) → 𝑗 ≤ sup(𝐴, ℝ, < ))
5245, 46, 49, 50, 51syl31anc 1329 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑗𝐴) → 𝑗 ≤ sup(𝐴, ℝ, < ))
5336, 42, 52jca32 558 . . . . . 6 (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑗𝐴) → ((𝑀 ∈ ℤ ∧ sup(𝐴, ℝ, < ) ∈ ℤ ∧ 𝑗 ∈ ℤ) ∧ (𝑀𝑗𝑗 ≤ sup(𝐴, ℝ, < ))))
54 elfz2 12333 . . . . . 6 (𝑗 ∈ (𝑀...sup(𝐴, ℝ, < )) ↔ ((𝑀 ∈ ℤ ∧ sup(𝐴, ℝ, < ) ∈ ℤ ∧ 𝑗 ∈ ℤ) ∧ (𝑀𝑗𝑗 ≤ sup(𝐴, ℝ, < ))))
5553, 54sylibr 224 . . . . 5 (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑗𝐴) → 𝑗 ∈ (𝑀...sup(𝐴, ℝ, < )))
5655ralrimiva 2966 . . . 4 ((𝜑 ∧ ¬ 𝐴 = ∅) → ∀𝑗𝐴 𝑗 ∈ (𝑀...sup(𝐴, ℝ, < )))
57 dfss3 3592 . . . 4 (𝐴 ⊆ (𝑀...sup(𝐴, ℝ, < )) ↔ ∀𝑗𝐴 𝑗 ∈ (𝑀...sup(𝐴, ℝ, < )))
5856, 57sylibr 224 . . 3 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝐴 ⊆ (𝑀...sup(𝐴, ℝ, < )))
59 oveq2 6658 . . . . 5 (𝑘 = sup(𝐴, ℝ, < ) → (𝑀...𝑘) = (𝑀...sup(𝐴, ℝ, < )))
6059sseq2d 3633 . . . 4 (𝑘 = sup(𝐴, ℝ, < ) → (𝐴 ⊆ (𝑀...𝑘) ↔ 𝐴 ⊆ (𝑀...sup(𝐴, ℝ, < ))))
6160rspcev 3309 . . 3 ((sup(𝐴, ℝ, < ) ∈ 𝑍𝐴 ⊆ (𝑀...sup(𝐴, ℝ, < ))) → ∃𝑘𝑍 𝐴 ⊆ (𝑀...𝑘))
6231, 58, 61syl2anc 693 . 2 ((𝜑 ∧ ¬ 𝐴 = ∅) → ∃𝑘𝑍 𝐴 ⊆ (𝑀...𝑘))
6317, 62pm2.61dan 832 1 (𝜑 → ∃𝑘𝑍 𝐴 ⊆ (𝑀...𝑘))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  wss 3574  c0 3915   class class class wbr 4653  cfv 5888  (class class class)co 6650  Fincfn 7955  supcsup 8346  cr 9935   < clt 10074  cle 10075  cz 11377  cuz 11687  ...cfz 12326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327
This theorem is referenced by:  sge0uzfsumgt  40661  sge0seq  40663  sge0reuz  40664  carageniuncllem2  40736  caratheodorylem2  40741
  Copyright terms: Public domain W3C validator