Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uzfissfz Structured version   Visualization version   Unicode version

Theorem uzfissfz 39542
Description: For any finite subset of the upper integers, there is a finite set of sequential integers that includes it. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
uzfissfz.m  |-  ( ph  ->  M  e.  ZZ )
uzfissfz.z  |-  Z  =  ( ZZ>= `  M )
uzfissfz.a  |-  ( ph  ->  A  C_  Z )
uzfissfz.fi  |-  ( ph  ->  A  e.  Fin )
Assertion
Ref Expression
uzfissfz  |-  ( ph  ->  E. k  e.  Z  A  C_  ( M ... k ) )
Distinct variable groups:    A, k    k, M    k, Z
Allowed substitution hint:    ph( k)

Proof of Theorem uzfissfz
Dummy variables  j  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uzfissfz.m . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
2 uzid 11702 . . . . . 6  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
31, 2syl 17 . . . . 5  |-  ( ph  ->  M  e.  ( ZZ>= `  M ) )
4 uzfissfz.z . . . . . . 7  |-  Z  =  ( ZZ>= `  M )
54a1i 11 . . . . . 6  |-  ( ph  ->  Z  =  ( ZZ>= `  M ) )
65eqcomd 2628 . . . . 5  |-  ( ph  ->  ( ZZ>= `  M )  =  Z )
73, 6eleqtrd 2703 . . . 4  |-  ( ph  ->  M  e.  Z )
87adantr 481 . . 3  |-  ( (
ph  /\  A  =  (/) )  ->  M  e.  Z )
9 id 22 . . . . 5  |-  ( A  =  (/)  ->  A  =  (/) )
10 0ss 3972 . . . . . 6  |-  (/)  C_  ( M ... M )
1110a1i 11 . . . . 5  |-  ( A  =  (/)  ->  (/)  C_  ( M ... M ) )
129, 11eqsstrd 3639 . . . 4  |-  ( A  =  (/)  ->  A  C_  ( M ... M ) )
1312adantl 482 . . 3  |-  ( (
ph  /\  A  =  (/) )  ->  A  C_  ( M ... M ) )
14 oveq2 6658 . . . . 5  |-  ( k  =  M  ->  ( M ... k )  =  ( M ... M
) )
1514sseq2d 3633 . . . 4  |-  ( k  =  M  ->  ( A  C_  ( M ... k )  <->  A  C_  ( M ... M ) ) )
1615rspcev 3309 . . 3  |-  ( ( M  e.  Z  /\  A  C_  ( M ... M ) )  ->  E. k  e.  Z  A  C_  ( M ... k ) )
178, 13, 16syl2anc 693 . 2  |-  ( (
ph  /\  A  =  (/) )  ->  E. k  e.  Z  A  C_  ( M ... k ) )
18 uzfissfz.a . . . . 5  |-  ( ph  ->  A  C_  Z )
1918adantr 481 . . . 4  |-  ( (
ph  /\  -.  A  =  (/) )  ->  A  C_  Z )
20 uzssz 11707 . . . . . . . . 9  |-  ( ZZ>= `  M )  C_  ZZ
214, 20eqsstri 3635 . . . . . . . 8  |-  Z  C_  ZZ
2221a1i 11 . . . . . . 7  |-  ( ph  ->  Z  C_  ZZ )
2318, 22sstrd 3613 . . . . . 6  |-  ( ph  ->  A  C_  ZZ )
2423adantr 481 . . . . 5  |-  ( (
ph  /\  -.  A  =  (/) )  ->  A  C_  ZZ )
259necon3bi 2820 . . . . . 6  |-  ( -.  A  =  (/)  ->  A  =/=  (/) )
2625adantl 482 . . . . 5  |-  ( (
ph  /\  -.  A  =  (/) )  ->  A  =/=  (/) )
27 uzfissfz.fi . . . . . 6  |-  ( ph  ->  A  e.  Fin )
2827adantr 481 . . . . 5  |-  ( (
ph  /\  -.  A  =  (/) )  ->  A  e.  Fin )
29 suprfinzcl 11492 . . . . 5  |-  ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  A  e. 
Fin )  ->  sup ( A ,  RR ,  <  )  e.  A )
3024, 26, 28, 29syl3anc 1326 . . . 4  |-  ( (
ph  /\  -.  A  =  (/) )  ->  sup ( A ,  RR ,  <  )  e.  A )
3119, 30sseldd 3604 . . 3  |-  ( (
ph  /\  -.  A  =  (/) )  ->  sup ( A ,  RR ,  <  )  e.  Z )
321ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  -.  A  =  (/) )  /\  j  e.  A )  ->  M  e.  ZZ )
3321, 31sseldi 3601 . . . . . . . . 9  |-  ( (
ph  /\  -.  A  =  (/) )  ->  sup ( A ,  RR ,  <  )  e.  ZZ )
3433adantr 481 . . . . . . . 8  |-  ( ( ( ph  /\  -.  A  =  (/) )  /\  j  e.  A )  ->  sup ( A ,  RR ,  <  )  e.  ZZ )
3524sselda 3603 . . . . . . . 8  |-  ( ( ( ph  /\  -.  A  =  (/) )  /\  j  e.  A )  ->  j  e.  ZZ )
3632, 34, 353jca 1242 . . . . . . 7  |-  ( ( ( ph  /\  -.  A  =  (/) )  /\  j  e.  A )  ->  ( M  e.  ZZ  /\ 
sup ( A ,  RR ,  <  )  e.  ZZ  /\  j  e.  ZZ ) )
3718sselda 3603 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  A )  ->  j  e.  Z )
384a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  A )  ->  Z  =  ( ZZ>= `  M
) )
3937, 38eleqtrd 2703 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  A )  ->  j  e.  ( ZZ>= `  M )
)
40 eluzle 11700 . . . . . . . . 9  |-  ( j  e.  ( ZZ>= `  M
)  ->  M  <_  j )
4139, 40syl 17 . . . . . . . 8  |-  ( (
ph  /\  j  e.  A )  ->  M  <_  j )
4241adantlr 751 . . . . . . 7  |-  ( ( ( ph  /\  -.  A  =  (/) )  /\  j  e.  A )  ->  M  <_  j )
43 zssre 11384 . . . . . . . . . 10  |-  ZZ  C_  RR
4423, 43syl6ss 3615 . . . . . . . . 9  |-  ( ph  ->  A  C_  RR )
4544ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  -.  A  =  (/) )  /\  j  e.  A )  ->  A  C_  RR )
4626adantr 481 . . . . . . . 8  |-  ( ( ( ph  /\  -.  A  =  (/) )  /\  j  e.  A )  ->  A  =/=  (/) )
47 fimaxre2 10969 . . . . . . . . . 10  |-  ( ( A  C_  RR  /\  A  e.  Fin )  ->  E. x  e.  RR  A. y  e.  A  y  <_  x
)
4844, 27, 47syl2anc 693 . . . . . . . . 9  |-  ( ph  ->  E. x  e.  RR  A. y  e.  A  y  <_  x )
4948ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  -.  A  =  (/) )  /\  j  e.  A )  ->  E. x  e.  RR  A. y  e.  A  y  <_  x )
50 simpr 477 . . . . . . . 8  |-  ( ( ( ph  /\  -.  A  =  (/) )  /\  j  e.  A )  ->  j  e.  A )
51 suprub 10984 . . . . . . . 8  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  j  e.  A )  ->  j  <_  sup ( A ,  RR ,  <  ) )
5245, 46, 49, 50, 51syl31anc 1329 . . . . . . 7  |-  ( ( ( ph  /\  -.  A  =  (/) )  /\  j  e.  A )  ->  j  <_  sup ( A ,  RR ,  <  ) )
5336, 42, 52jca32 558 . . . . . 6  |-  ( ( ( ph  /\  -.  A  =  (/) )  /\  j  e.  A )  ->  ( ( M  e.  ZZ  /\  sup ( A ,  RR ,  <  )  e.  ZZ  /\  j  e.  ZZ )  /\  ( M  <_  j  /\  j  <_  sup ( A ,  RR ,  <  ) ) ) )
54 elfz2 12333 . . . . . 6  |-  ( j  e.  ( M ... sup ( A ,  RR ,  <  ) )  <->  ( ( M  e.  ZZ  /\  sup ( A ,  RR ,  <  )  e.  ZZ  /\  j  e.  ZZ )  /\  ( M  <_  j  /\  j  <_  sup ( A ,  RR ,  <  ) ) ) )
5553, 54sylibr 224 . . . . 5  |-  ( ( ( ph  /\  -.  A  =  (/) )  /\  j  e.  A )  ->  j  e.  ( M ... sup ( A ,  RR ,  <  ) ) )
5655ralrimiva 2966 . . . 4  |-  ( (
ph  /\  -.  A  =  (/) )  ->  A. j  e.  A  j  e.  ( M ... sup ( A ,  RR ,  <  ) ) )
57 dfss3 3592 . . . 4  |-  ( A 
C_  ( M ... sup ( A ,  RR ,  <  ) )  <->  A. j  e.  A  j  e.  ( M ... sup ( A ,  RR ,  <  ) ) )
5856, 57sylibr 224 . . 3  |-  ( (
ph  /\  -.  A  =  (/) )  ->  A  C_  ( M ... sup ( A ,  RR ,  <  ) ) )
59 oveq2 6658 . . . . 5  |-  ( k  =  sup ( A ,  RR ,  <  )  ->  ( M ... k )  =  ( M ... sup ( A ,  RR ,  <  ) ) )
6059sseq2d 3633 . . . 4  |-  ( k  =  sup ( A ,  RR ,  <  )  ->  ( A  C_  ( M ... k )  <-> 
A  C_  ( M ... sup ( A ,  RR ,  <  ) ) ) )
6160rspcev 3309 . . 3  |-  ( ( sup ( A ,  RR ,  <  )  e.  Z  /\  A  C_  ( M ... sup ( A ,  RR ,  <  ) ) )  ->  E. k  e.  Z  A  C_  ( M ... k ) )
6231, 58, 61syl2anc 693 . 2  |-  ( (
ph  /\  -.  A  =  (/) )  ->  E. k  e.  Z  A  C_  ( M ... k ) )
6317, 62pm2.61dan 832 1  |-  ( ph  ->  E. k  e.  Z  A  C_  ( M ... k ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913    C_ wss 3574   (/)c0 3915   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Fincfn 7955   supcsup 8346   RRcr 9935    < clt 10074    <_ cle 10075   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327
This theorem is referenced by:  sge0uzfsumgt  40661  sge0seq  40663  sge0reuz  40664  carageniuncllem2  40736  caratheodorylem2  40741
  Copyright terms: Public domain W3C validator