Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uzubioo Structured version   Visualization version   GIF version

Theorem uzubioo 39794
Description: The upper integers are unbounded above. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
uzubioo.1 (𝜑𝑀 ∈ ℤ)
uzubioo.2 𝑍 = (ℤ𝑀)
uzubioo.3 (𝜑𝑋 ∈ ℝ)
Assertion
Ref Expression
uzubioo (𝜑 → ∃𝑘 ∈ (𝑋(,)+∞)𝑘𝑍)
Distinct variable groups:   𝑘,𝑀   𝑘,𝑋   𝑘,𝑍
Allowed substitution hint:   𝜑(𝑘)

Proof of Theorem uzubioo
StepHypRef Expression
1 uzubioo.3 . . . 4 (𝜑𝑋 ∈ ℝ)
21rexrd 10089 . . 3 (𝜑𝑋 ∈ ℝ*)
3 pnfxr 10092 . . . 4 +∞ ∈ ℝ*
43a1i 11 . . 3 (𝜑 → +∞ ∈ ℝ*)
51ceilcld 39679 . . . . . 6 (𝜑 → (⌈‘𝑋) ∈ ℤ)
6 1zzd 11408 . . . . . 6 (𝜑 → 1 ∈ ℤ)
75, 6zaddcld 11486 . . . . 5 (𝜑 → ((⌈‘𝑋) + 1) ∈ ℤ)
87zred 11482 . . . 4 (𝜑 → ((⌈‘𝑋) + 1) ∈ ℝ)
9 uzubioo.1 . . . . 5 (𝜑𝑀 ∈ ℤ)
109zred 11482 . . . 4 (𝜑𝑀 ∈ ℝ)
118, 10ifcld 4131 . . 3 (𝜑 → if(𝑀 ≤ ((⌈‘𝑋) + 1), ((⌈‘𝑋) + 1), 𝑀) ∈ ℝ)
125zred 11482 . . . . 5 (𝜑 → (⌈‘𝑋) ∈ ℝ)
131ceilged 39673 . . . . 5 (𝜑𝑋 ≤ (⌈‘𝑋))
1412ltp1d 10954 . . . . 5 (𝜑 → (⌈‘𝑋) < ((⌈‘𝑋) + 1))
151, 12, 8, 13, 14lelttrd 10195 . . . 4 (𝜑𝑋 < ((⌈‘𝑋) + 1))
1610, 8max2d 39688 . . . 4 (𝜑 → ((⌈‘𝑋) + 1) ≤ if(𝑀 ≤ ((⌈‘𝑋) + 1), ((⌈‘𝑋) + 1), 𝑀))
171, 8, 11, 15, 16ltletrd 10197 . . 3 (𝜑𝑋 < if(𝑀 ≤ ((⌈‘𝑋) + 1), ((⌈‘𝑋) + 1), 𝑀))
1811ltpnfd 11955 . . 3 (𝜑 → if(𝑀 ≤ ((⌈‘𝑋) + 1), ((⌈‘𝑋) + 1), 𝑀) < +∞)
192, 4, 11, 17, 18eliood 39720 . 2 (𝜑 → if(𝑀 ≤ ((⌈‘𝑋) + 1), ((⌈‘𝑋) + 1), 𝑀) ∈ (𝑋(,)+∞))
20 uzubioo.2 . . 3 𝑍 = (ℤ𝑀)
217, 9ifcld 4131 . . 3 (𝜑 → if(𝑀 ≤ ((⌈‘𝑋) + 1), ((⌈‘𝑋) + 1), 𝑀) ∈ ℤ)
22 max1 12016 . . . 4 ((𝑀 ∈ ℝ ∧ ((⌈‘𝑋) + 1) ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ ((⌈‘𝑋) + 1), ((⌈‘𝑋) + 1), 𝑀))
2310, 8, 22syl2anc 693 . . 3 (𝜑𝑀 ≤ if(𝑀 ≤ ((⌈‘𝑋) + 1), ((⌈‘𝑋) + 1), 𝑀))
2420, 9, 21, 23eluzd 39635 . 2 (𝜑 → if(𝑀 ≤ ((⌈‘𝑋) + 1), ((⌈‘𝑋) + 1), 𝑀) ∈ 𝑍)
25 eleq1 2689 . . 3 (𝑘 = if(𝑀 ≤ ((⌈‘𝑋) + 1), ((⌈‘𝑋) + 1), 𝑀) → (𝑘𝑍 ↔ if(𝑀 ≤ ((⌈‘𝑋) + 1), ((⌈‘𝑋) + 1), 𝑀) ∈ 𝑍))
2625rspcev 3309 . 2 ((if(𝑀 ≤ ((⌈‘𝑋) + 1), ((⌈‘𝑋) + 1), 𝑀) ∈ (𝑋(,)+∞) ∧ if(𝑀 ≤ ((⌈‘𝑋) + 1), ((⌈‘𝑋) + 1), 𝑀) ∈ 𝑍) → ∃𝑘 ∈ (𝑋(,)+∞)𝑘𝑍)
2719, 24, 26syl2anc 693 1 (𝜑 → ∃𝑘 ∈ (𝑋(,)+∞)𝑘𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  wrex 2913  ifcif 4086   class class class wbr 4653  cfv 5888  (class class class)co 6650  cr 9935  1c1 9937   + caddc 9939  +∞cpnf 10071  *cxr 10073  cle 10075  cz 11377  cuz 11687  (,)cioo 12175  cceil 12592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-ioo 12179  df-fl 12593  df-ceil 12594
This theorem is referenced by:  uzubico  39795  uzubioo2  39796
  Copyright terms: Public domain W3C validator