![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vmappw | Structured version Visualization version GIF version |
Description: Value of the von Mangoldt function at a prime power. (Contributed by Mario Carneiro, 7-Apr-2016.) |
Ref | Expression |
---|---|
vmappw | ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (Λ‘(𝑃↑𝐾)) = (log‘𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmnn 15388 | . . . 4 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
2 | nnnn0 11299 | . . . 4 ⊢ (𝐾 ∈ ℕ → 𝐾 ∈ ℕ0) | |
3 | nnexpcl 12873 | . . . 4 ⊢ ((𝑃 ∈ ℕ ∧ 𝐾 ∈ ℕ0) → (𝑃↑𝐾) ∈ ℕ) | |
4 | 1, 2, 3 | syl2an 494 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃↑𝐾) ∈ ℕ) |
5 | eqid 2622 | . . . 4 ⊢ {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃↑𝐾)} = {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃↑𝐾)} | |
6 | 5 | vmaval 24839 | . . 3 ⊢ ((𝑃↑𝐾) ∈ ℕ → (Λ‘(𝑃↑𝐾)) = if((#‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃↑𝐾)}) = 1, (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃↑𝐾)}), 0)) |
7 | 4, 6 | syl 17 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (Λ‘(𝑃↑𝐾)) = if((#‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃↑𝐾)}) = 1, (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃↑𝐾)}), 0)) |
8 | df-rab 2921 | . . . . . 6 ⊢ {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃↑𝐾)} = {𝑝 ∣ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑃↑𝐾))} | |
9 | prmdvdsexpb 15428 | . . . . . . . . . . . . 13 ⊢ ((𝑝 ∈ ℙ ∧ 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑝 ∥ (𝑃↑𝐾) ↔ 𝑝 = 𝑃)) | |
10 | 9 | biimpd 219 | . . . . . . . . . . . 12 ⊢ ((𝑝 ∈ ℙ ∧ 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑝 ∥ (𝑃↑𝐾) → 𝑝 = 𝑃)) |
11 | 10 | 3coml 1272 | . . . . . . . . . . 11 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝑃↑𝐾) → 𝑝 = 𝑃)) |
12 | 11 | 3expa 1265 | . . . . . . . . . 10 ⊢ (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝑃↑𝐾) → 𝑝 = 𝑃)) |
13 | 12 | expimpd 629 | . . . . . . . . 9 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑃↑𝐾)) → 𝑝 = 𝑃)) |
14 | simpl 473 | . . . . . . . . . . 11 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → 𝑃 ∈ ℙ) | |
15 | prmz 15389 | . . . . . . . . . . . 12 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) | |
16 | iddvdsexp 15005 | . . . . . . . . . . . 12 ⊢ ((𝑃 ∈ ℤ ∧ 𝐾 ∈ ℕ) → 𝑃 ∥ (𝑃↑𝐾)) | |
17 | 15, 16 | sylan 488 | . . . . . . . . . . 11 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → 𝑃 ∥ (𝑃↑𝐾)) |
18 | 14, 17 | jca 554 | . . . . . . . . . 10 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝑃↑𝐾))) |
19 | eleq1 2689 | . . . . . . . . . . 11 ⊢ (𝑝 = 𝑃 → (𝑝 ∈ ℙ ↔ 𝑃 ∈ ℙ)) | |
20 | breq1 4656 | . . . . . . . . . . 11 ⊢ (𝑝 = 𝑃 → (𝑝 ∥ (𝑃↑𝐾) ↔ 𝑃 ∥ (𝑃↑𝐾))) | |
21 | 19, 20 | anbi12d 747 | . . . . . . . . . 10 ⊢ (𝑝 = 𝑃 → ((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑃↑𝐾)) ↔ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝑃↑𝐾)))) |
22 | 18, 21 | syl5ibrcom 237 | . . . . . . . . 9 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑝 = 𝑃 → (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑃↑𝐾)))) |
23 | 13, 22 | impbid 202 | . . . . . . . 8 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑃↑𝐾)) ↔ 𝑝 = 𝑃)) |
24 | velsn 4193 | . . . . . . . 8 ⊢ (𝑝 ∈ {𝑃} ↔ 𝑝 = 𝑃) | |
25 | 23, 24 | syl6bbr 278 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑃↑𝐾)) ↔ 𝑝 ∈ {𝑃})) |
26 | 25 | abbi1dv 2743 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → {𝑝 ∣ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑃↑𝐾))} = {𝑃}) |
27 | 8, 26 | syl5eq 2668 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃↑𝐾)} = {𝑃}) |
28 | 27 | fveq2d 6195 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (#‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃↑𝐾)}) = (#‘{𝑃})) |
29 | hashsng 13159 | . . . . 5 ⊢ (𝑃 ∈ ℙ → (#‘{𝑃}) = 1) | |
30 | 29 | adantr 481 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (#‘{𝑃}) = 1) |
31 | 28, 30 | eqtrd 2656 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (#‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃↑𝐾)}) = 1) |
32 | 31 | iftrued 4094 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → if((#‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃↑𝐾)}) = 1, (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃↑𝐾)}), 0) = (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃↑𝐾)})) |
33 | 27 | unieqd 4446 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃↑𝐾)} = ∪ {𝑃}) |
34 | unisng 4452 | . . . . 5 ⊢ (𝑃 ∈ ℙ → ∪ {𝑃} = 𝑃) | |
35 | 34 | adantr 481 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ∪ {𝑃} = 𝑃) |
36 | 33, 35 | eqtrd 2656 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃↑𝐾)} = 𝑃) |
37 | 36 | fveq2d 6195 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃↑𝐾)}) = (log‘𝑃)) |
38 | 7, 32, 37 | 3eqtrd 2660 | 1 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (Λ‘(𝑃↑𝐾)) = (log‘𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 {cab 2608 {crab 2916 ifcif 4086 {csn 4177 ∪ cuni 4436 class class class wbr 4653 ‘cfv 5888 (class class class)co 6650 0cc0 9936 1c1 9937 ℕcn 11020 ℕ0cn0 11292 ℤcz 11377 ↑cexp 12860 #chash 13117 ∥ cdvds 14983 ℙcprime 15385 logclog 24301 Λcvma 24818 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-fz 12327 df-fl 12593 df-mod 12669 df-seq 12802 df-exp 12861 df-hash 13118 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-dvds 14984 df-gcd 15217 df-prm 15386 df-vma 24824 |
This theorem is referenced by: vmaprm 24843 vmacl 24844 efvmacl 24846 vmalelog 24930 vmasum 24941 chpval2 24943 rplogsumlem2 25174 rpvmasumlem 25176 |
Copyright terms: Public domain | W3C validator |