MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vmappw Structured version   Visualization version   GIF version

Theorem vmappw 24842
Description: Value of the von Mangoldt function at a prime power. (Contributed by Mario Carneiro, 7-Apr-2016.)
Assertion
Ref Expression
vmappw ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (Λ‘(𝑃𝐾)) = (log‘𝑃))

Proof of Theorem vmappw
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 prmnn 15388 . . . 4 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2 nnnn0 11299 . . . 4 (𝐾 ∈ ℕ → 𝐾 ∈ ℕ0)
3 nnexpcl 12873 . . . 4 ((𝑃 ∈ ℕ ∧ 𝐾 ∈ ℕ0) → (𝑃𝐾) ∈ ℕ)
41, 2, 3syl2an 494 . . 3 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃𝐾) ∈ ℕ)
5 eqid 2622 . . . 4 {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃𝐾)} = {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃𝐾)}
65vmaval 24839 . . 3 ((𝑃𝐾) ∈ ℕ → (Λ‘(𝑃𝐾)) = if((#‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃𝐾)}) = 1, (log‘ {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃𝐾)}), 0))
74, 6syl 17 . 2 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (Λ‘(𝑃𝐾)) = if((#‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃𝐾)}) = 1, (log‘ {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃𝐾)}), 0))
8 df-rab 2921 . . . . . 6 {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃𝐾)} = {𝑝 ∣ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑃𝐾))}
9 prmdvdsexpb 15428 . . . . . . . . . . . . 13 ((𝑝 ∈ ℙ ∧ 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑝 ∥ (𝑃𝐾) ↔ 𝑝 = 𝑃))
109biimpd 219 . . . . . . . . . . . 12 ((𝑝 ∈ ℙ ∧ 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑝 ∥ (𝑃𝐾) → 𝑝 = 𝑃))
11103coml 1272 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝑃𝐾) → 𝑝 = 𝑃))
12113expa 1265 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝑃𝐾) → 𝑝 = 𝑃))
1312expimpd 629 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑃𝐾)) → 𝑝 = 𝑃))
14 simpl 473 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → 𝑃 ∈ ℙ)
15 prmz 15389 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
16 iddvdsexp 15005 . . . . . . . . . . . 12 ((𝑃 ∈ ℤ ∧ 𝐾 ∈ ℕ) → 𝑃 ∥ (𝑃𝐾))
1715, 16sylan 488 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → 𝑃 ∥ (𝑃𝐾))
1814, 17jca 554 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝑃𝐾)))
19 eleq1 2689 . . . . . . . . . . 11 (𝑝 = 𝑃 → (𝑝 ∈ ℙ ↔ 𝑃 ∈ ℙ))
20 breq1 4656 . . . . . . . . . . 11 (𝑝 = 𝑃 → (𝑝 ∥ (𝑃𝐾) ↔ 𝑃 ∥ (𝑃𝐾)))
2119, 20anbi12d 747 . . . . . . . . . 10 (𝑝 = 𝑃 → ((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑃𝐾)) ↔ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝑃𝐾))))
2218, 21syl5ibrcom 237 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑝 = 𝑃 → (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑃𝐾))))
2313, 22impbid 202 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑃𝐾)) ↔ 𝑝 = 𝑃))
24 velsn 4193 . . . . . . . 8 (𝑝 ∈ {𝑃} ↔ 𝑝 = 𝑃)
2523, 24syl6bbr 278 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑃𝐾)) ↔ 𝑝 ∈ {𝑃}))
2625abbi1dv 2743 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → {𝑝 ∣ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑃𝐾))} = {𝑃})
278, 26syl5eq 2668 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃𝐾)} = {𝑃})
2827fveq2d 6195 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (#‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃𝐾)}) = (#‘{𝑃}))
29 hashsng 13159 . . . . 5 (𝑃 ∈ ℙ → (#‘{𝑃}) = 1)
3029adantr 481 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (#‘{𝑃}) = 1)
3128, 30eqtrd 2656 . . 3 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (#‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃𝐾)}) = 1)
3231iftrued 4094 . 2 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → if((#‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃𝐾)}) = 1, (log‘ {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃𝐾)}), 0) = (log‘ {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃𝐾)}))
3327unieqd 4446 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃𝐾)} = {𝑃})
34 unisng 4452 . . . . 5 (𝑃 ∈ ℙ → {𝑃} = 𝑃)
3534adantr 481 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → {𝑃} = 𝑃)
3633, 35eqtrd 2656 . . 3 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃𝐾)} = 𝑃)
3736fveq2d 6195 . 2 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (log‘ {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃𝐾)}) = (log‘𝑃))
387, 32, 373eqtrd 2660 1 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (Λ‘(𝑃𝐾)) = (log‘𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  {cab 2608  {crab 2916  ifcif 4086  {csn 4177   cuni 4436   class class class wbr 4653  cfv 5888  (class class class)co 6650  0cc0 9936  1c1 9937  cn 11020  0cn0 11292  cz 11377  cexp 12860  #chash 13117  cdvds 14983  cprime 15385  logclog 24301  Λcvma 24818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-prm 15386  df-vma 24824
This theorem is referenced by:  vmaprm  24843  vmacl  24844  efvmacl  24846  vmalelog  24930  vmasum  24941  chpval2  24943  rplogsumlem2  25174  rpvmasumlem  25176
  Copyright terms: Public domain W3C validator