| Step | Hyp | Ref
| Expression |
| 1 | | isppw 24840 |
. 2
⊢ (𝐴 ∈ ℕ →
((Λ‘𝐴) ≠ 0
↔ ∃!𝑞 ∈
ℙ 𝑞 ∥ 𝐴)) |
| 2 | | reu6 3395 |
. . 3
⊢
(∃!𝑞 ∈
ℙ 𝑞 ∥ 𝐴 ↔ ∃𝑝 ∈ ℙ ∀𝑞 ∈ ℙ (𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝)) |
| 3 | | equid 1939 |
. . . . . . . . 9
⊢ 𝑝 = 𝑝 |
| 4 | | breq1 4656 |
. . . . . . . . . . . 12
⊢ (𝑞 = 𝑝 → (𝑞 ∥ 𝐴 ↔ 𝑝 ∥ 𝐴)) |
| 5 | | equequ1 1952 |
. . . . . . . . . . . 12
⊢ (𝑞 = 𝑝 → (𝑞 = 𝑝 ↔ 𝑝 = 𝑝)) |
| 6 | 4, 5 | bibi12d 335 |
. . . . . . . . . . 11
⊢ (𝑞 = 𝑝 → ((𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝) ↔ (𝑝 ∥ 𝐴 ↔ 𝑝 = 𝑝))) |
| 7 | 6 | rspcva 3307 |
. . . . . . . . . 10
⊢ ((𝑝 ∈ ℙ ∧
∀𝑞 ∈ ℙ
(𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝)) → (𝑝 ∥ 𝐴 ↔ 𝑝 = 𝑝)) |
| 8 | 7 | adantll 750 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧
∀𝑞 ∈ ℙ
(𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝)) → (𝑝 ∥ 𝐴 ↔ 𝑝 = 𝑝)) |
| 9 | 3, 8 | mpbiri 248 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧
∀𝑞 ∈ ℙ
(𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝)) → 𝑝 ∥ 𝐴) |
| 10 | | simplr 792 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧
∀𝑞 ∈ ℙ
(𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝)) → 𝑝 ∈ ℙ) |
| 11 | | simpll 790 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧
∀𝑞 ∈ ℙ
(𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝)) → 𝐴 ∈ ℕ) |
| 12 | | pcelnn 15574 |
. . . . . . . . 9
⊢ ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ) → ((𝑝 pCnt 𝐴) ∈ ℕ ↔ 𝑝 ∥ 𝐴)) |
| 13 | 10, 11, 12 | syl2anc 693 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧
∀𝑞 ∈ ℙ
(𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝)) → ((𝑝 pCnt 𝐴) ∈ ℕ ↔ 𝑝 ∥ 𝐴)) |
| 14 | 9, 13 | mpbird 247 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧
∀𝑞 ∈ ℙ
(𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝)) → (𝑝 pCnt 𝐴) ∈ ℕ) |
| 15 | | simpr 477 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑞 ∈ ℙ ∧ (𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝))) ∧ 𝑞 = 𝑝) → 𝑞 = 𝑝) |
| 16 | 15 | oveq1d 6665 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑞 ∈ ℙ ∧ (𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝))) ∧ 𝑞 = 𝑝) → (𝑞 pCnt 𝐴) = (𝑝 pCnt 𝐴)) |
| 17 | | simpllr 799 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑞 ∈ ℙ ∧ (𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝))) ∧ 𝑞 = 𝑝) → 𝑝 ∈ ℙ) |
| 18 | | pccl 15554 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝑝 pCnt 𝐴) ∈
ℕ0) |
| 19 | 18 | ancoms 469 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ∈
ℕ0) |
| 20 | 19 | ad2antrr 762 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑞 ∈ ℙ ∧ (𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝))) ∧ 𝑞 = 𝑝) → (𝑝 pCnt 𝐴) ∈
ℕ0) |
| 21 | 20 | nn0zd 11480 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑞 ∈ ℙ ∧ (𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝))) ∧ 𝑞 = 𝑝) → (𝑝 pCnt 𝐴) ∈ ℤ) |
| 22 | | pcid 15577 |
. . . . . . . . . . . . . . 15
⊢ ((𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℤ) → (𝑝 pCnt (𝑝↑(𝑝 pCnt 𝐴))) = (𝑝 pCnt 𝐴)) |
| 23 | 17, 21, 22 | syl2anc 693 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑞 ∈ ℙ ∧ (𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝))) ∧ 𝑞 = 𝑝) → (𝑝 pCnt (𝑝↑(𝑝 pCnt 𝐴))) = (𝑝 pCnt 𝐴)) |
| 24 | 16, 23 | eqtr4d 2659 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑞 ∈ ℙ ∧ (𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝))) ∧ 𝑞 = 𝑝) → (𝑞 pCnt 𝐴) = (𝑝 pCnt (𝑝↑(𝑝 pCnt 𝐴)))) |
| 25 | 15 | oveq1d 6665 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑞 ∈ ℙ ∧ (𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝))) ∧ 𝑞 = 𝑝) → (𝑞 pCnt (𝑝↑(𝑝 pCnt 𝐴))) = (𝑝 pCnt (𝑝↑(𝑝 pCnt 𝐴)))) |
| 26 | 24, 25 | eqtr4d 2659 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑞 ∈ ℙ ∧ (𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝))) ∧ 𝑞 = 𝑝) → (𝑞 pCnt 𝐴) = (𝑞 pCnt (𝑝↑(𝑝 pCnt 𝐴)))) |
| 27 | | simprr 796 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑞 ∈ ℙ ∧ (𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝))) → (𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝)) |
| 28 | 27 | notbid 308 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑞 ∈ ℙ ∧ (𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝))) → (¬ 𝑞 ∥ 𝐴 ↔ ¬ 𝑞 = 𝑝)) |
| 29 | 28 | biimpar 502 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑞 ∈ ℙ ∧ (𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝))) ∧ ¬ 𝑞 = 𝑝) → ¬ 𝑞 ∥ 𝐴) |
| 30 | | simplrl 800 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑞 ∈ ℙ ∧ (𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝))) ∧ ¬ 𝑞 = 𝑝) → 𝑞 ∈ ℙ) |
| 31 | | simplll 798 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑞 ∈ ℙ ∧ (𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝))) ∧ ¬ 𝑞 = 𝑝) → 𝐴 ∈ ℕ) |
| 32 | | pceq0 15575 |
. . . . . . . . . . . . . . 15
⊢ ((𝑞 ∈ ℙ ∧ 𝐴 ∈ ℕ) → ((𝑞 pCnt 𝐴) = 0 ↔ ¬ 𝑞 ∥ 𝐴)) |
| 33 | 30, 31, 32 | syl2anc 693 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑞 ∈ ℙ ∧ (𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝))) ∧ ¬ 𝑞 = 𝑝) → ((𝑞 pCnt 𝐴) = 0 ↔ ¬ 𝑞 ∥ 𝐴)) |
| 34 | 29, 33 | mpbird 247 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑞 ∈ ℙ ∧ (𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝))) ∧ ¬ 𝑞 = 𝑝) → (𝑞 pCnt 𝐴) = 0) |
| 35 | | simprl 794 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑞 ∈ ℙ ∧ (𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝))) → 𝑞 ∈ ℙ) |
| 36 | | simplr 792 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑞 ∈ ℙ ∧ (𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝))) → 𝑝 ∈ ℙ) |
| 37 | 19 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑞 ∈ ℙ ∧ (𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝))) → (𝑝 pCnt 𝐴) ∈
ℕ0) |
| 38 | | prmdvdsexpr 15429 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑞 ∈ ℙ ∧ 𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ0) → (𝑞 ∥ (𝑝↑(𝑝 pCnt 𝐴)) → 𝑞 = 𝑝)) |
| 39 | 35, 36, 37, 38 | syl3anc 1326 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑞 ∈ ℙ ∧ (𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝))) → (𝑞 ∥ (𝑝↑(𝑝 pCnt 𝐴)) → 𝑞 = 𝑝)) |
| 40 | 39 | con3dimp 457 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑞 ∈ ℙ ∧ (𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝))) ∧ ¬ 𝑞 = 𝑝) → ¬ 𝑞 ∥ (𝑝↑(𝑝 pCnt 𝐴))) |
| 41 | | prmnn 15388 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑝 ∈ ℙ → 𝑝 ∈
ℕ) |
| 42 | 41 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → 𝑝 ∈
ℕ) |
| 43 | 42, 19 | nnexpcld 13030 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝↑(𝑝 pCnt 𝐴)) ∈ ℕ) |
| 44 | 43 | ad2antrr 762 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑞 ∈ ℙ ∧ (𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝))) ∧ ¬ 𝑞 = 𝑝) → (𝑝↑(𝑝 pCnt 𝐴)) ∈ ℕ) |
| 45 | | pceq0 15575 |
. . . . . . . . . . . . . . 15
⊢ ((𝑞 ∈ ℙ ∧ (𝑝↑(𝑝 pCnt 𝐴)) ∈ ℕ) → ((𝑞 pCnt (𝑝↑(𝑝 pCnt 𝐴))) = 0 ↔ ¬ 𝑞 ∥ (𝑝↑(𝑝 pCnt 𝐴)))) |
| 46 | 30, 44, 45 | syl2anc 693 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑞 ∈ ℙ ∧ (𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝))) ∧ ¬ 𝑞 = 𝑝) → ((𝑞 pCnt (𝑝↑(𝑝 pCnt 𝐴))) = 0 ↔ ¬ 𝑞 ∥ (𝑝↑(𝑝 pCnt 𝐴)))) |
| 47 | 40, 46 | mpbird 247 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑞 ∈ ℙ ∧ (𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝))) ∧ ¬ 𝑞 = 𝑝) → (𝑞 pCnt (𝑝↑(𝑝 pCnt 𝐴))) = 0) |
| 48 | 34, 47 | eqtr4d 2659 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑞 ∈ ℙ ∧ (𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝))) ∧ ¬ 𝑞 = 𝑝) → (𝑞 pCnt 𝐴) = (𝑞 pCnt (𝑝↑(𝑝 pCnt 𝐴)))) |
| 49 | 26, 48 | pm2.61dan 832 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑞 ∈ ℙ ∧ (𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝))) → (𝑞 pCnt 𝐴) = (𝑞 pCnt (𝑝↑(𝑝 pCnt 𝐴)))) |
| 50 | 49 | expr 643 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → ((𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝) → (𝑞 pCnt 𝐴) = (𝑞 pCnt (𝑝↑(𝑝 pCnt 𝐴))))) |
| 51 | 50 | ralimdva 2962 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) →
(∀𝑞 ∈ ℙ
(𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝) → ∀𝑞 ∈ ℙ (𝑞 pCnt 𝐴) = (𝑞 pCnt (𝑝↑(𝑝 pCnt 𝐴))))) |
| 52 | 51 | imp 445 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧
∀𝑞 ∈ ℙ
(𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝)) → ∀𝑞 ∈ ℙ (𝑞 pCnt 𝐴) = (𝑞 pCnt (𝑝↑(𝑝 pCnt 𝐴)))) |
| 53 | | nnnn0 11299 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℕ0) |
| 54 | 53 | ad2antrr 762 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧
∀𝑞 ∈ ℙ
(𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝)) → 𝐴 ∈
ℕ0) |
| 55 | 43 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧
∀𝑞 ∈ ℙ
(𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝)) → (𝑝↑(𝑝 pCnt 𝐴)) ∈ ℕ) |
| 56 | 55 | nnnn0d 11351 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧
∀𝑞 ∈ ℙ
(𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝)) → (𝑝↑(𝑝 pCnt 𝐴)) ∈
ℕ0) |
| 57 | | pc11 15584 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ0
∧ (𝑝↑(𝑝 pCnt 𝐴)) ∈ ℕ0) → (𝐴 = (𝑝↑(𝑝 pCnt 𝐴)) ↔ ∀𝑞 ∈ ℙ (𝑞 pCnt 𝐴) = (𝑞 pCnt (𝑝↑(𝑝 pCnt 𝐴))))) |
| 58 | 54, 56, 57 | syl2anc 693 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧
∀𝑞 ∈ ℙ
(𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝)) → (𝐴 = (𝑝↑(𝑝 pCnt 𝐴)) ↔ ∀𝑞 ∈ ℙ (𝑞 pCnt 𝐴) = (𝑞 pCnt (𝑝↑(𝑝 pCnt 𝐴))))) |
| 59 | 52, 58 | mpbird 247 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧
∀𝑞 ∈ ℙ
(𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝)) → 𝐴 = (𝑝↑(𝑝 pCnt 𝐴))) |
| 60 | | oveq2 6658 |
. . . . . . . . 9
⊢ (𝑘 = (𝑝 pCnt 𝐴) → (𝑝↑𝑘) = (𝑝↑(𝑝 pCnt 𝐴))) |
| 61 | 60 | eqeq2d 2632 |
. . . . . . . 8
⊢ (𝑘 = (𝑝 pCnt 𝐴) → (𝐴 = (𝑝↑𝑘) ↔ 𝐴 = (𝑝↑(𝑝 pCnt 𝐴)))) |
| 62 | 61 | rspcev 3309 |
. . . . . . 7
⊢ (((𝑝 pCnt 𝐴) ∈ ℕ ∧ 𝐴 = (𝑝↑(𝑝 pCnt 𝐴))) → ∃𝑘 ∈ ℕ 𝐴 = (𝑝↑𝑘)) |
| 63 | 14, 59, 62 | syl2anc 693 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧
∀𝑞 ∈ ℙ
(𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝)) → ∃𝑘 ∈ ℕ 𝐴 = (𝑝↑𝑘)) |
| 64 | 63 | ex 450 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) →
(∀𝑞 ∈ ℙ
(𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝) → ∃𝑘 ∈ ℕ 𝐴 = (𝑝↑𝑘))) |
| 65 | | prmdvdsexpb 15428 |
. . . . . . . . . . 11
⊢ ((𝑞 ∈ ℙ ∧ 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → (𝑞 ∥ (𝑝↑𝑘) ↔ 𝑞 = 𝑝)) |
| 66 | 65 | 3coml 1272 |
. . . . . . . . . 10
⊢ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ∧ 𝑞 ∈ ℙ) → (𝑞 ∥ (𝑝↑𝑘) ↔ 𝑞 = 𝑝)) |
| 67 | 66 | 3expa 1265 |
. . . . . . . . 9
⊢ (((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 𝑞 ∈ ℙ) → (𝑞 ∥ (𝑝↑𝑘) ↔ 𝑞 = 𝑝)) |
| 68 | 67 | ralrimiva 2966 |
. . . . . . . 8
⊢ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) →
∀𝑞 ∈ ℙ
(𝑞 ∥ (𝑝↑𝑘) ↔ 𝑞 = 𝑝)) |
| 69 | 68 | adantll 750 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ ℕ) →
∀𝑞 ∈ ℙ
(𝑞 ∥ (𝑝↑𝑘) ↔ 𝑞 = 𝑝)) |
| 70 | | breq2 4657 |
. . . . . . . . 9
⊢ (𝐴 = (𝑝↑𝑘) → (𝑞 ∥ 𝐴 ↔ 𝑞 ∥ (𝑝↑𝑘))) |
| 71 | 70 | bibi1d 333 |
. . . . . . . 8
⊢ (𝐴 = (𝑝↑𝑘) → ((𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝) ↔ (𝑞 ∥ (𝑝↑𝑘) ↔ 𝑞 = 𝑝))) |
| 72 | 71 | ralbidv 2986 |
. . . . . . 7
⊢ (𝐴 = (𝑝↑𝑘) → (∀𝑞 ∈ ℙ (𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝) ↔ ∀𝑞 ∈ ℙ (𝑞 ∥ (𝑝↑𝑘) ↔ 𝑞 = 𝑝))) |
| 73 | 69, 72 | syl5ibrcom 237 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → (𝐴 = (𝑝↑𝑘) → ∀𝑞 ∈ ℙ (𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝))) |
| 74 | 73 | rexlimdva 3031 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) →
(∃𝑘 ∈ ℕ
𝐴 = (𝑝↑𝑘) → ∀𝑞 ∈ ℙ (𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝))) |
| 75 | 64, 74 | impbid 202 |
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) →
(∀𝑞 ∈ ℙ
(𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝) ↔ ∃𝑘 ∈ ℕ 𝐴 = (𝑝↑𝑘))) |
| 76 | 75 | rexbidva 3049 |
. . 3
⊢ (𝐴 ∈ ℕ →
(∃𝑝 ∈ ℙ
∀𝑞 ∈ ℙ
(𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝) ↔ ∃𝑝 ∈ ℙ ∃𝑘 ∈ ℕ 𝐴 = (𝑝↑𝑘))) |
| 77 | 2, 76 | syl5bb 272 |
. 2
⊢ (𝐴 ∈ ℕ →
(∃!𝑞 ∈ ℙ
𝑞 ∥ 𝐴 ↔ ∃𝑝 ∈ ℙ ∃𝑘 ∈ ℕ 𝐴 = (𝑝↑𝑘))) |
| 78 | 1, 77 | bitrd 268 |
1
⊢ (𝐴 ∈ ℕ →
((Λ‘𝐴) ≠ 0
↔ ∃𝑝 ∈
ℙ ∃𝑘 ∈
ℕ 𝐴 = (𝑝↑𝑘))) |