![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > volicoff | Structured version Visualization version GIF version |
Description: ((vol ∘ [,)) ∘ 𝐹) expressed in map-to notation. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
volicoff.1 | ⊢ (𝜑 → 𝐹:𝐴⟶(ℝ × ℝ*)) |
Ref | Expression |
---|---|
volicoff | ⊢ (𝜑 → ((vol ∘ [,)) ∘ 𝐹):𝐴⟶(0[,]+∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | volf 23297 | . . . 4 ⊢ vol:dom vol⟶(0[,]+∞) | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → vol:dom vol⟶(0[,]+∞)) |
3 | icof 39411 | . . . . . . 7 ⊢ [,):(ℝ* × ℝ*)⟶𝒫 ℝ* | |
4 | 3 | a1i 11 | . . . . . 6 ⊢ (𝜑 → [,):(ℝ* × ℝ*)⟶𝒫 ℝ*) |
5 | ressxr 10083 | . . . . . . . 8 ⊢ ℝ ⊆ ℝ* | |
6 | xpss1 5228 | . . . . . . . 8 ⊢ (ℝ ⊆ ℝ* → (ℝ × ℝ*) ⊆ (ℝ* × ℝ*)) | |
7 | 5, 6 | ax-mp 5 | . . . . . . 7 ⊢ (ℝ × ℝ*) ⊆ (ℝ* × ℝ*) |
8 | 7 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (ℝ × ℝ*) ⊆ (ℝ* × ℝ*)) |
9 | volicoff.1 | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐴⟶(ℝ × ℝ*)) | |
10 | 4, 8, 9 | fcoss 39402 | . . . . 5 ⊢ (𝜑 → ([,) ∘ 𝐹):𝐴⟶𝒫 ℝ*) |
11 | 10 | ffnd 6046 | . . . 4 ⊢ (𝜑 → ([,) ∘ 𝐹) Fn 𝐴) |
12 | 9 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐹:𝐴⟶(ℝ × ℝ*)) |
13 | simpr 477 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
14 | 12, 13 | fvovco 39381 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (([,) ∘ 𝐹)‘𝑥) = ((1st ‘(𝐹‘𝑥))[,)(2nd ‘(𝐹‘𝑥)))) |
15 | 9 | ffvelrnda 6359 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ (ℝ × ℝ*)) |
16 | xp1st 7198 | . . . . . . . 8 ⊢ ((𝐹‘𝑥) ∈ (ℝ × ℝ*) → (1st ‘(𝐹‘𝑥)) ∈ ℝ) | |
17 | 15, 16 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (1st ‘(𝐹‘𝑥)) ∈ ℝ) |
18 | xp2nd 7199 | . . . . . . . 8 ⊢ ((𝐹‘𝑥) ∈ (ℝ × ℝ*) → (2nd ‘(𝐹‘𝑥)) ∈ ℝ*) | |
19 | 15, 18 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (2nd ‘(𝐹‘𝑥)) ∈ ℝ*) |
20 | icombl 23332 | . . . . . . 7 ⊢ (((1st ‘(𝐹‘𝑥)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑥)) ∈ ℝ*) → ((1st ‘(𝐹‘𝑥))[,)(2nd ‘(𝐹‘𝑥))) ∈ dom vol) | |
21 | 17, 19, 20 | syl2anc 693 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((1st ‘(𝐹‘𝑥))[,)(2nd ‘(𝐹‘𝑥))) ∈ dom vol) |
22 | 14, 21 | eqeltrd 2701 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (([,) ∘ 𝐹)‘𝑥) ∈ dom vol) |
23 | 22 | ralrimiva 2966 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (([,) ∘ 𝐹)‘𝑥) ∈ dom vol) |
24 | fnfvrnss 6390 | . . . 4 ⊢ ((([,) ∘ 𝐹) Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (([,) ∘ 𝐹)‘𝑥) ∈ dom vol) → ran ([,) ∘ 𝐹) ⊆ dom vol) | |
25 | 11, 23, 24 | syl2anc 693 | . . 3 ⊢ (𝜑 → ran ([,) ∘ 𝐹) ⊆ dom vol) |
26 | ffrn 6055 | . . . 4 ⊢ (([,) ∘ 𝐹):𝐴⟶𝒫 ℝ* → ([,) ∘ 𝐹):𝐴⟶ran ([,) ∘ 𝐹)) | |
27 | 10, 26 | syl 17 | . . 3 ⊢ (𝜑 → ([,) ∘ 𝐹):𝐴⟶ran ([,) ∘ 𝐹)) |
28 | 2, 25, 27 | fcoss 39402 | . 2 ⊢ (𝜑 → (vol ∘ ([,) ∘ 𝐹)):𝐴⟶(0[,]+∞)) |
29 | coass 5654 | . . . 4 ⊢ ((vol ∘ [,)) ∘ 𝐹) = (vol ∘ ([,) ∘ 𝐹)) | |
30 | 29 | feq1i 6036 | . . 3 ⊢ (((vol ∘ [,)) ∘ 𝐹):𝐴⟶(0[,]+∞) ↔ (vol ∘ ([,) ∘ 𝐹)):𝐴⟶(0[,]+∞)) |
31 | 30 | a1i 11 | . 2 ⊢ (𝜑 → (((vol ∘ [,)) ∘ 𝐹):𝐴⟶(0[,]+∞) ↔ (vol ∘ ([,) ∘ 𝐹)):𝐴⟶(0[,]+∞))) |
32 | 28, 31 | mpbird 247 | 1 ⊢ (𝜑 → ((vol ∘ [,)) ∘ 𝐹):𝐴⟶(0[,]+∞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∈ wcel 1990 ∀wral 2912 ⊆ wss 3574 𝒫 cpw 4158 × cxp 5112 dom cdm 5114 ran crn 5115 ∘ ccom 5118 Fn wfn 5883 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 1st c1st 7166 2nd c2nd 7167 ℝcr 9935 0cc0 9936 +∞cpnf 10071 ℝ*cxr 10073 [,)cico 12177 [,]cicc 12178 volcvol 23232 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-er 7742 df-map 7859 df-pm 7860 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-oi 8415 df-card 8765 df-cda 8990 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-q 11789 df-rp 11833 df-xadd 11947 df-ioo 12179 df-ico 12181 df-icc 12182 df-fz 12327 df-fzo 12466 df-fl 12593 df-seq 12802 df-exp 12861 df-hash 13118 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-clim 14219 df-rlim 14220 df-sum 14417 df-xmet 19739 df-met 19740 df-ovol 23233 df-vol 23234 |
This theorem is referenced by: volicofmpt 40214 |
Copyright terms: Public domain | W3C validator |