MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkeq Structured version   Visualization version   GIF version

Theorem wlkeq 26529
Description: Conditions for two walks (within the same graph) being the same. (Contributed by AV, 1-Jul-2018.) (Revised by AV, 16-May-2019.) (Revised by AV, 14-Apr-2021.)
Assertion
Ref Expression
wlkeq ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺) ∧ 𝑁 = (#‘(1st𝐴))) → (𝐴 = 𝐵 ↔ (𝑁 = (#‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑁
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem wlkeq
StepHypRef Expression
1 wlkop 26523 . . . . 5 (𝐴 ∈ (Walks‘𝐺) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
2 1st2ndb 7206 . . . . 5 (𝐴 ∈ (V × V) ↔ 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
31, 2sylibr 224 . . . 4 (𝐴 ∈ (Walks‘𝐺) → 𝐴 ∈ (V × V))
4 wlkop 26523 . . . . 5 (𝐵 ∈ (Walks‘𝐺) → 𝐵 = ⟨(1st𝐵), (2nd𝐵)⟩)
5 1st2ndb 7206 . . . . 5 (𝐵 ∈ (V × V) ↔ 𝐵 = ⟨(1st𝐵), (2nd𝐵)⟩)
64, 5sylibr 224 . . . 4 (𝐵 ∈ (Walks‘𝐺) → 𝐵 ∈ (V × V))
7 xpopth 7207 . . . . 5 ((𝐴 ∈ (V × V) ∧ 𝐵 ∈ (V × V)) → (((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵)) ↔ 𝐴 = 𝐵))
87bicomd 213 . . . 4 ((𝐴 ∈ (V × V) ∧ 𝐵 ∈ (V × V)) → (𝐴 = 𝐵 ↔ ((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵))))
93, 6, 8syl2an 494 . . 3 ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) → (𝐴 = 𝐵 ↔ ((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵))))
1093adant3 1081 . 2 ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺) ∧ 𝑁 = (#‘(1st𝐴))) → (𝐴 = 𝐵 ↔ ((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵))))
11 eqid 2622 . . . . . . 7 (Vtx‘𝐺) = (Vtx‘𝐺)
12 eqid 2622 . . . . . . 7 (iEdg‘𝐺) = (iEdg‘𝐺)
13 eqid 2622 . . . . . . 7 (1st𝐴) = (1st𝐴)
14 eqid 2622 . . . . . . 7 (2nd𝐴) = (2nd𝐴)
1511, 12, 13, 14wlkelwrd 26528 . . . . . 6 (𝐴 ∈ (Walks‘𝐺) → ((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐴):(0...(#‘(1st𝐴)))⟶(Vtx‘𝐺)))
16 eqid 2622 . . . . . . 7 (1st𝐵) = (1st𝐵)
17 eqid 2622 . . . . . . 7 (2nd𝐵) = (2nd𝐵)
1811, 12, 16, 17wlkelwrd 26528 . . . . . 6 (𝐵 ∈ (Walks‘𝐺) → ((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(#‘(1st𝐵)))⟶(Vtx‘𝐺)))
1915, 18anim12i 590 . . . . 5 ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) → (((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐴):(0...(#‘(1st𝐴)))⟶(Vtx‘𝐺)) ∧ ((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(#‘(1st𝐵)))⟶(Vtx‘𝐺))))
20 eleq1 2689 . . . . . . . 8 (𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ → (𝐴 ∈ (Walks‘𝐺) ↔ ⟨(1st𝐴), (2nd𝐴)⟩ ∈ (Walks‘𝐺)))
21 df-br 4654 . . . . . . . . 9 ((1st𝐴)(Walks‘𝐺)(2nd𝐴) ↔ ⟨(1st𝐴), (2nd𝐴)⟩ ∈ (Walks‘𝐺))
22 wlklenvm1 26517 . . . . . . . . 9 ((1st𝐴)(Walks‘𝐺)(2nd𝐴) → (#‘(1st𝐴)) = ((#‘(2nd𝐴)) − 1))
2321, 22sylbir 225 . . . . . . . 8 (⟨(1st𝐴), (2nd𝐴)⟩ ∈ (Walks‘𝐺) → (#‘(1st𝐴)) = ((#‘(2nd𝐴)) − 1))
2420, 23syl6bi 243 . . . . . . 7 (𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ → (𝐴 ∈ (Walks‘𝐺) → (#‘(1st𝐴)) = ((#‘(2nd𝐴)) − 1)))
251, 24mpcom 38 . . . . . 6 (𝐴 ∈ (Walks‘𝐺) → (#‘(1st𝐴)) = ((#‘(2nd𝐴)) − 1))
26 eleq1 2689 . . . . . . . 8 (𝐵 = ⟨(1st𝐵), (2nd𝐵)⟩ → (𝐵 ∈ (Walks‘𝐺) ↔ ⟨(1st𝐵), (2nd𝐵)⟩ ∈ (Walks‘𝐺)))
27 df-br 4654 . . . . . . . . 9 ((1st𝐵)(Walks‘𝐺)(2nd𝐵) ↔ ⟨(1st𝐵), (2nd𝐵)⟩ ∈ (Walks‘𝐺))
28 wlklenvm1 26517 . . . . . . . . 9 ((1st𝐵)(Walks‘𝐺)(2nd𝐵) → (#‘(1st𝐵)) = ((#‘(2nd𝐵)) − 1))
2927, 28sylbir 225 . . . . . . . 8 (⟨(1st𝐵), (2nd𝐵)⟩ ∈ (Walks‘𝐺) → (#‘(1st𝐵)) = ((#‘(2nd𝐵)) − 1))
3026, 29syl6bi 243 . . . . . . 7 (𝐵 = ⟨(1st𝐵), (2nd𝐵)⟩ → (𝐵 ∈ (Walks‘𝐺) → (#‘(1st𝐵)) = ((#‘(2nd𝐵)) − 1)))
314, 30mpcom 38 . . . . . 6 (𝐵 ∈ (Walks‘𝐺) → (#‘(1st𝐵)) = ((#‘(2nd𝐵)) − 1))
3225, 31anim12i 590 . . . . 5 ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) → ((#‘(1st𝐴)) = ((#‘(2nd𝐴)) − 1) ∧ (#‘(1st𝐵)) = ((#‘(2nd𝐵)) − 1)))
33 eqwrd 13346 . . . . . . . 8 (((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (1st𝐵) ∈ Word dom (iEdg‘𝐺)) → ((1st𝐴) = (1st𝐵) ↔ ((#‘(1st𝐴)) = (#‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^(#‘(1st𝐴)))((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥))))
3433ad2ant2r 783 . . . . . . 7 ((((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐴):(0...(#‘(1st𝐴)))⟶(Vtx‘𝐺)) ∧ ((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(#‘(1st𝐵)))⟶(Vtx‘𝐺))) → ((1st𝐴) = (1st𝐵) ↔ ((#‘(1st𝐴)) = (#‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^(#‘(1st𝐴)))((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥))))
3534adantr 481 . . . . . 6 (((((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐴):(0...(#‘(1st𝐴)))⟶(Vtx‘𝐺)) ∧ ((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(#‘(1st𝐵)))⟶(Vtx‘𝐺))) ∧ ((#‘(1st𝐴)) = ((#‘(2nd𝐴)) − 1) ∧ (#‘(1st𝐵)) = ((#‘(2nd𝐵)) − 1))) → ((1st𝐴) = (1st𝐵) ↔ ((#‘(1st𝐴)) = (#‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^(#‘(1st𝐴)))((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥))))
36 lencl 13324 . . . . . . . . . . 11 ((1st𝐴) ∈ Word dom (iEdg‘𝐺) → (#‘(1st𝐴)) ∈ ℕ0)
3736adantr 481 . . . . . . . . . 10 (((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐴):(0...(#‘(1st𝐴)))⟶(Vtx‘𝐺)) → (#‘(1st𝐴)) ∈ ℕ0)
3837adantr 481 . . . . . . . . 9 ((((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐴):(0...(#‘(1st𝐴)))⟶(Vtx‘𝐺)) ∧ ((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(#‘(1st𝐵)))⟶(Vtx‘𝐺))) → (#‘(1st𝐴)) ∈ ℕ0)
39 simplr 792 . . . . . . . . 9 ((((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐴):(0...(#‘(1st𝐴)))⟶(Vtx‘𝐺)) ∧ ((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(#‘(1st𝐵)))⟶(Vtx‘𝐺))) → (2nd𝐴):(0...(#‘(1st𝐴)))⟶(Vtx‘𝐺))
40 simprr 796 . . . . . . . . 9 ((((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐴):(0...(#‘(1st𝐴)))⟶(Vtx‘𝐺)) ∧ ((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(#‘(1st𝐵)))⟶(Vtx‘𝐺))) → (2nd𝐵):(0...(#‘(1st𝐵)))⟶(Vtx‘𝐺))
4138, 39, 403jca 1242 . . . . . . . 8 ((((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐴):(0...(#‘(1st𝐴)))⟶(Vtx‘𝐺)) ∧ ((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(#‘(1st𝐵)))⟶(Vtx‘𝐺))) → ((#‘(1st𝐴)) ∈ ℕ0 ∧ (2nd𝐴):(0...(#‘(1st𝐴)))⟶(Vtx‘𝐺) ∧ (2nd𝐵):(0...(#‘(1st𝐵)))⟶(Vtx‘𝐺)))
4241adantr 481 . . . . . . 7 (((((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐴):(0...(#‘(1st𝐴)))⟶(Vtx‘𝐺)) ∧ ((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(#‘(1st𝐵)))⟶(Vtx‘𝐺))) ∧ ((#‘(1st𝐴)) = ((#‘(2nd𝐴)) − 1) ∧ (#‘(1st𝐵)) = ((#‘(2nd𝐵)) − 1))) → ((#‘(1st𝐴)) ∈ ℕ0 ∧ (2nd𝐴):(0...(#‘(1st𝐴)))⟶(Vtx‘𝐺) ∧ (2nd𝐵):(0...(#‘(1st𝐵)))⟶(Vtx‘𝐺)))
43 2ffzeq 12460 . . . . . . 7 (((#‘(1st𝐴)) ∈ ℕ0 ∧ (2nd𝐴):(0...(#‘(1st𝐴)))⟶(Vtx‘𝐺) ∧ (2nd𝐵):(0...(#‘(1st𝐵)))⟶(Vtx‘𝐺)) → ((2nd𝐴) = (2nd𝐵) ↔ ((#‘(1st𝐴)) = (#‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...(#‘(1st𝐴)))((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))))
4442, 43syl 17 . . . . . 6 (((((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐴):(0...(#‘(1st𝐴)))⟶(Vtx‘𝐺)) ∧ ((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(#‘(1st𝐵)))⟶(Vtx‘𝐺))) ∧ ((#‘(1st𝐴)) = ((#‘(2nd𝐴)) − 1) ∧ (#‘(1st𝐵)) = ((#‘(2nd𝐵)) − 1))) → ((2nd𝐴) = (2nd𝐵) ↔ ((#‘(1st𝐴)) = (#‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...(#‘(1st𝐴)))((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))))
4535, 44anbi12d 747 . . . . 5 (((((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐴):(0...(#‘(1st𝐴)))⟶(Vtx‘𝐺)) ∧ ((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(#‘(1st𝐵)))⟶(Vtx‘𝐺))) ∧ ((#‘(1st𝐴)) = ((#‘(2nd𝐴)) − 1) ∧ (#‘(1st𝐵)) = ((#‘(2nd𝐵)) − 1))) → (((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵)) ↔ (((#‘(1st𝐴)) = (#‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^(#‘(1st𝐴)))((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ∧ ((#‘(1st𝐴)) = (#‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...(#‘(1st𝐴)))((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥)))))
4619, 32, 45syl2anc 693 . . . 4 ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) → (((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵)) ↔ (((#‘(1st𝐴)) = (#‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^(#‘(1st𝐴)))((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ∧ ((#‘(1st𝐴)) = (#‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...(#‘(1st𝐴)))((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥)))))
47463adant3 1081 . . 3 ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺) ∧ 𝑁 = (#‘(1st𝐴))) → (((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵)) ↔ (((#‘(1st𝐴)) = (#‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^(#‘(1st𝐴)))((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ∧ ((#‘(1st𝐴)) = (#‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...(#‘(1st𝐴)))((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥)))))
48 eqeq1 2626 . . . . . . 7 (𝑁 = (#‘(1st𝐴)) → (𝑁 = (#‘(1st𝐵)) ↔ (#‘(1st𝐴)) = (#‘(1st𝐵))))
49 oveq2 6658 . . . . . . . 8 (𝑁 = (#‘(1st𝐴)) → (0..^𝑁) = (0..^(#‘(1st𝐴))))
5049raleqdv 3144 . . . . . . 7 (𝑁 = (#‘(1st𝐴)) → (∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥) ↔ ∀𝑥 ∈ (0..^(#‘(1st𝐴)))((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)))
5148, 50anbi12d 747 . . . . . 6 (𝑁 = (#‘(1st𝐴)) → ((𝑁 = (#‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ↔ ((#‘(1st𝐴)) = (#‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^(#‘(1st𝐴)))((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥))))
52 oveq2 6658 . . . . . . . 8 (𝑁 = (#‘(1st𝐴)) → (0...𝑁) = (0...(#‘(1st𝐴))))
5352raleqdv 3144 . . . . . . 7 (𝑁 = (#‘(1st𝐴)) → (∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥) ↔ ∀𝑥 ∈ (0...(#‘(1st𝐴)))((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥)))
5448, 53anbi12d 747 . . . . . 6 (𝑁 = (#‘(1st𝐴)) → ((𝑁 = (#‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥)) ↔ ((#‘(1st𝐴)) = (#‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...(#‘(1st𝐴)))((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))))
5551, 54anbi12d 747 . . . . 5 (𝑁 = (#‘(1st𝐴)) → (((𝑁 = (#‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ∧ (𝑁 = (#‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))) ↔ (((#‘(1st𝐴)) = (#‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^(#‘(1st𝐴)))((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ∧ ((#‘(1st𝐴)) = (#‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...(#‘(1st𝐴)))((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥)))))
5655bibi2d 332 . . . 4 (𝑁 = (#‘(1st𝐴)) → ((((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵)) ↔ ((𝑁 = (#‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ∧ (𝑁 = (#‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥)))) ↔ (((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵)) ↔ (((#‘(1st𝐴)) = (#‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^(#‘(1st𝐴)))((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ∧ ((#‘(1st𝐴)) = (#‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...(#‘(1st𝐴)))((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))))))
57563ad2ant3 1084 . . 3 ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺) ∧ 𝑁 = (#‘(1st𝐴))) → ((((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵)) ↔ ((𝑁 = (#‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ∧ (𝑁 = (#‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥)))) ↔ (((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵)) ↔ (((#‘(1st𝐴)) = (#‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^(#‘(1st𝐴)))((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ∧ ((#‘(1st𝐴)) = (#‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...(#‘(1st𝐴)))((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))))))
5847, 57mpbird 247 . 2 ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺) ∧ 𝑁 = (#‘(1st𝐴))) → (((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵)) ↔ ((𝑁 = (#‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ∧ (𝑁 = (#‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥)))))
59 3anass 1042 . . . 4 ((𝑁 = (#‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥)) ↔ (𝑁 = (#‘(1st𝐵)) ∧ (∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))))
60 anandi 871 . . . 4 ((𝑁 = (#‘(1st𝐵)) ∧ (∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))) ↔ ((𝑁 = (#‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ∧ (𝑁 = (#‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))))
6159, 60bitr2i 265 . . 3 (((𝑁 = (#‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ∧ (𝑁 = (#‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))) ↔ (𝑁 = (#‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥)))
6261a1i 11 . 2 ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺) ∧ 𝑁 = (#‘(1st𝐴))) → (((𝑁 = (#‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ∧ (𝑁 = (#‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))) ↔ (𝑁 = (#‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))))
6310, 58, 623bitrd 294 1 ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺) ∧ 𝑁 = (#‘(1st𝐴))) → (𝐴 = 𝐵 ↔ (𝑁 = (#‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  cop 4183   class class class wbr 4653   × cxp 5112  dom cdm 5114  wf 5884  cfv 5888  (class class class)co 6650  1st c1st 7166  2nd c2nd 7167  0cc0 9936  1c1 9937  cmin 10266  0cn0 11292  ...cfz 12326  ..^cfzo 12465  #chash 13117  Word cword 13291  Vtxcvtx 25874  iEdgciedg 25875  Walkscwlks 26492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-wlks 26495
This theorem is referenced by:  uspgr2wlkeq  26542
  Copyright terms: Public domain W3C validator