MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkeq Structured version   Visualization version   Unicode version

Theorem wlkeq 26529
Description: Conditions for two walks (within the same graph) being the same. (Contributed by AV, 1-Jul-2018.) (Revised by AV, 16-May-2019.) (Revised by AV, 14-Apr-2021.)
Assertion
Ref Expression
wlkeq  |-  ( ( A  e.  (Walks `  G )  /\  B  e.  (Walks `  G )  /\  N  =  ( # `
 ( 1st `  A
) ) )  -> 
( A  =  B  <-> 
( N  =  (
# `  ( 1st `  B ) )  /\  A. x  e.  ( 0..^ N ) ( ( 1st `  A ) `
 x )  =  ( ( 1st `  B
) `  x )  /\  A. x  e.  ( 0 ... N ) ( ( 2nd `  A
) `  x )  =  ( ( 2nd `  B ) `  x
) ) ) )
Distinct variable groups:    x, A    x, B    x, N
Allowed substitution hint:    G( x)

Proof of Theorem wlkeq
StepHypRef Expression
1 wlkop 26523 . . . . 5  |-  ( A  e.  (Walks `  G
)  ->  A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >. )
2 1st2ndb 7206 . . . . 5  |-  ( A  e.  ( _V  X.  _V )  <->  A  =  <. ( 1st `  A ) ,  ( 2nd `  A
) >. )
31, 2sylibr 224 . . . 4  |-  ( A  e.  (Walks `  G
)  ->  A  e.  ( _V  X.  _V )
)
4 wlkop 26523 . . . . 5  |-  ( B  e.  (Walks `  G
)  ->  B  =  <. ( 1st `  B
) ,  ( 2nd `  B ) >. )
5 1st2ndb 7206 . . . . 5  |-  ( B  e.  ( _V  X.  _V )  <->  B  =  <. ( 1st `  B ) ,  ( 2nd `  B
) >. )
64, 5sylibr 224 . . . 4  |-  ( B  e.  (Walks `  G
)  ->  B  e.  ( _V  X.  _V )
)
7 xpopth 7207 . . . . 5  |-  ( ( A  e.  ( _V 
X.  _V )  /\  B  e.  ( _V  X.  _V ) )  ->  (
( ( 1st `  A
)  =  ( 1st `  B )  /\  ( 2nd `  A )  =  ( 2nd `  B
) )  <->  A  =  B ) )
87bicomd 213 . . . 4  |-  ( ( A  e.  ( _V 
X.  _V )  /\  B  e.  ( _V  X.  _V ) )  ->  ( A  =  B  <->  ( ( 1st `  A )  =  ( 1st `  B
)  /\  ( 2nd `  A )  =  ( 2nd `  B ) ) ) )
93, 6, 8syl2an 494 . . 3  |-  ( ( A  e.  (Walks `  G )  /\  B  e.  (Walks `  G )
)  ->  ( A  =  B  <->  ( ( 1st `  A )  =  ( 1st `  B )  /\  ( 2nd `  A
)  =  ( 2nd `  B ) ) ) )
1093adant3 1081 . 2  |-  ( ( A  e.  (Walks `  G )  /\  B  e.  (Walks `  G )  /\  N  =  ( # `
 ( 1st `  A
) ) )  -> 
( A  =  B  <-> 
( ( 1st `  A
)  =  ( 1st `  B )  /\  ( 2nd `  A )  =  ( 2nd `  B
) ) ) )
11 eqid 2622 . . . . . . 7  |-  (Vtx `  G )  =  (Vtx
`  G )
12 eqid 2622 . . . . . . 7  |-  (iEdg `  G )  =  (iEdg `  G )
13 eqid 2622 . . . . . . 7  |-  ( 1st `  A )  =  ( 1st `  A )
14 eqid 2622 . . . . . . 7  |-  ( 2nd `  A )  =  ( 2nd `  A )
1511, 12, 13, 14wlkelwrd 26528 . . . . . 6  |-  ( A  e.  (Walks `  G
)  ->  ( ( 1st `  A )  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  A
) : ( 0 ... ( # `  ( 1st `  A ) ) ) --> (Vtx `  G
) ) )
16 eqid 2622 . . . . . . 7  |-  ( 1st `  B )  =  ( 1st `  B )
17 eqid 2622 . . . . . . 7  |-  ( 2nd `  B )  =  ( 2nd `  B )
1811, 12, 16, 17wlkelwrd 26528 . . . . . 6  |-  ( B  e.  (Walks `  G
)  ->  ( ( 1st `  B )  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  B
) : ( 0 ... ( # `  ( 1st `  B ) ) ) --> (Vtx `  G
) ) )
1915, 18anim12i 590 . . . . 5  |-  ( ( A  e.  (Walks `  G )  /\  B  e.  (Walks `  G )
)  ->  ( (
( 1st `  A
)  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  A ) : ( 0 ... ( # `
 ( 1st `  A
) ) ) --> (Vtx
`  G ) )  /\  ( ( 1st `  B )  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  B ) : ( 0 ... ( # `  ( 1st `  B ) ) ) --> (Vtx `  G
) ) ) )
20 eleq1 2689 . . . . . . . 8  |-  ( A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >.  ->  ( A  e.  (Walks `  G
)  <->  <. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  (Walks `  G ) ) )
21 df-br 4654 . . . . . . . . 9  |-  ( ( 1st `  A ) (Walks `  G )
( 2nd `  A
)  <->  <. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  (Walks `  G ) )
22 wlklenvm1 26517 . . . . . . . . 9  |-  ( ( 1st `  A ) (Walks `  G )
( 2nd `  A
)  ->  ( # `  ( 1st `  A ) )  =  ( ( # `  ( 2nd `  A
) )  -  1 ) )
2321, 22sylbir 225 . . . . . . . 8  |-  ( <.
( 1st `  A
) ,  ( 2nd `  A ) >.  e.  (Walks `  G )  ->  ( # `
 ( 1st `  A
) )  =  ( ( # `  ( 2nd `  A ) )  -  1 ) )
2420, 23syl6bi 243 . . . . . . 7  |-  ( A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >.  ->  ( A  e.  (Walks `  G
)  ->  ( # `  ( 1st `  A ) )  =  ( ( # `  ( 2nd `  A
) )  -  1 ) ) )
251, 24mpcom 38 . . . . . 6  |-  ( A  e.  (Walks `  G
)  ->  ( # `  ( 1st `  A ) )  =  ( ( # `  ( 2nd `  A
) )  -  1 ) )
26 eleq1 2689 . . . . . . . 8  |-  ( B  =  <. ( 1st `  B
) ,  ( 2nd `  B ) >.  ->  ( B  e.  (Walks `  G
)  <->  <. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  (Walks `  G ) ) )
27 df-br 4654 . . . . . . . . 9  |-  ( ( 1st `  B ) (Walks `  G )
( 2nd `  B
)  <->  <. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  (Walks `  G ) )
28 wlklenvm1 26517 . . . . . . . . 9  |-  ( ( 1st `  B ) (Walks `  G )
( 2nd `  B
)  ->  ( # `  ( 1st `  B ) )  =  ( ( # `  ( 2nd `  B
) )  -  1 ) )
2927, 28sylbir 225 . . . . . . . 8  |-  ( <.
( 1st `  B
) ,  ( 2nd `  B ) >.  e.  (Walks `  G )  ->  ( # `
 ( 1st `  B
) )  =  ( ( # `  ( 2nd `  B ) )  -  1 ) )
3026, 29syl6bi 243 . . . . . . 7  |-  ( B  =  <. ( 1st `  B
) ,  ( 2nd `  B ) >.  ->  ( B  e.  (Walks `  G
)  ->  ( # `  ( 1st `  B ) )  =  ( ( # `  ( 2nd `  B
) )  -  1 ) ) )
314, 30mpcom 38 . . . . . 6  |-  ( B  e.  (Walks `  G
)  ->  ( # `  ( 1st `  B ) )  =  ( ( # `  ( 2nd `  B
) )  -  1 ) )
3225, 31anim12i 590 . . . . 5  |-  ( ( A  e.  (Walks `  G )  /\  B  e.  (Walks `  G )
)  ->  ( ( # `
 ( 1st `  A
) )  =  ( ( # `  ( 2nd `  A ) )  -  1 )  /\  ( # `  ( 1st `  B ) )  =  ( ( # `  ( 2nd `  B ) )  -  1 ) ) )
33 eqwrd 13346 . . . . . . . 8  |-  ( ( ( 1st `  A
)  e. Word  dom  (iEdg `  G )  /\  ( 1st `  B )  e. Word  dom  (iEdg `  G )
)  ->  ( ( 1st `  A )  =  ( 1st `  B
)  <->  ( ( # `  ( 1st `  A
) )  =  (
# `  ( 1st `  B ) )  /\  A. x  e.  ( 0..^ ( # `  ( 1st `  A ) ) ) ( ( 1st `  A ) `  x
)  =  ( ( 1st `  B ) `
 x ) ) ) )
3433ad2ant2r 783 . . . . . . 7  |-  ( ( ( ( 1st `  A
)  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  A ) : ( 0 ... ( # `
 ( 1st `  A
) ) ) --> (Vtx
`  G ) )  /\  ( ( 1st `  B )  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  B ) : ( 0 ... ( # `  ( 1st `  B ) ) ) --> (Vtx `  G
) ) )  -> 
( ( 1st `  A
)  =  ( 1st `  B )  <->  ( ( # `
 ( 1st `  A
) )  =  (
# `  ( 1st `  B ) )  /\  A. x  e.  ( 0..^ ( # `  ( 1st `  A ) ) ) ( ( 1st `  A ) `  x
)  =  ( ( 1st `  B ) `
 x ) ) ) )
3534adantr 481 . . . . . 6  |-  ( ( ( ( ( 1st `  A )  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  A ) : ( 0 ... ( # `  ( 1st `  A ) ) ) --> (Vtx `  G
) )  /\  (
( 1st `  B
)  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  B ) : ( 0 ... ( # `
 ( 1st `  B
) ) ) --> (Vtx
`  G ) ) )  /\  ( (
# `  ( 1st `  A ) )  =  ( ( # `  ( 2nd `  A ) )  -  1 )  /\  ( # `  ( 1st `  B ) )  =  ( ( # `  ( 2nd `  B ) )  -  1 ) ) )  ->  ( ( 1st `  A )  =  ( 1st `  B
)  <->  ( ( # `  ( 1st `  A
) )  =  (
# `  ( 1st `  B ) )  /\  A. x  e.  ( 0..^ ( # `  ( 1st `  A ) ) ) ( ( 1st `  A ) `  x
)  =  ( ( 1st `  B ) `
 x ) ) ) )
36 lencl 13324 . . . . . . . . . . 11  |-  ( ( 1st `  A )  e. Word  dom  (iEdg `  G
)  ->  ( # `  ( 1st `  A ) )  e.  NN0 )
3736adantr 481 . . . . . . . . . 10  |-  ( ( ( 1st `  A
)  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  A ) : ( 0 ... ( # `
 ( 1st `  A
) ) ) --> (Vtx
`  G ) )  ->  ( # `  ( 1st `  A ) )  e.  NN0 )
3837adantr 481 . . . . . . . . 9  |-  ( ( ( ( 1st `  A
)  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  A ) : ( 0 ... ( # `
 ( 1st `  A
) ) ) --> (Vtx
`  G ) )  /\  ( ( 1st `  B )  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  B ) : ( 0 ... ( # `  ( 1st `  B ) ) ) --> (Vtx `  G
) ) )  -> 
( # `  ( 1st `  A ) )  e. 
NN0 )
39 simplr 792 . . . . . . . . 9  |-  ( ( ( ( 1st `  A
)  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  A ) : ( 0 ... ( # `
 ( 1st `  A
) ) ) --> (Vtx
`  G ) )  /\  ( ( 1st `  B )  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  B ) : ( 0 ... ( # `  ( 1st `  B ) ) ) --> (Vtx `  G
) ) )  -> 
( 2nd `  A
) : ( 0 ... ( # `  ( 1st `  A ) ) ) --> (Vtx `  G
) )
40 simprr 796 . . . . . . . . 9  |-  ( ( ( ( 1st `  A
)  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  A ) : ( 0 ... ( # `
 ( 1st `  A
) ) ) --> (Vtx
`  G ) )  /\  ( ( 1st `  B )  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  B ) : ( 0 ... ( # `  ( 1st `  B ) ) ) --> (Vtx `  G
) ) )  -> 
( 2nd `  B
) : ( 0 ... ( # `  ( 1st `  B ) ) ) --> (Vtx `  G
) )
4138, 39, 403jca 1242 . . . . . . . 8  |-  ( ( ( ( 1st `  A
)  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  A ) : ( 0 ... ( # `
 ( 1st `  A
) ) ) --> (Vtx
`  G ) )  /\  ( ( 1st `  B )  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  B ) : ( 0 ... ( # `  ( 1st `  B ) ) ) --> (Vtx `  G
) ) )  -> 
( ( # `  ( 1st `  A ) )  e.  NN0  /\  ( 2nd `  A ) : ( 0 ... ( # `
 ( 1st `  A
) ) ) --> (Vtx
`  G )  /\  ( 2nd `  B ) : ( 0 ... ( # `  ( 1st `  B ) ) ) --> (Vtx `  G
) ) )
4241adantr 481 . . . . . . 7  |-  ( ( ( ( ( 1st `  A )  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  A ) : ( 0 ... ( # `  ( 1st `  A ) ) ) --> (Vtx `  G
) )  /\  (
( 1st `  B
)  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  B ) : ( 0 ... ( # `
 ( 1st `  B
) ) ) --> (Vtx
`  G ) ) )  /\  ( (
# `  ( 1st `  A ) )  =  ( ( # `  ( 2nd `  A ) )  -  1 )  /\  ( # `  ( 1st `  B ) )  =  ( ( # `  ( 2nd `  B ) )  -  1 ) ) )  ->  ( ( # `
 ( 1st `  A
) )  e.  NN0  /\  ( 2nd `  A
) : ( 0 ... ( # `  ( 1st `  A ) ) ) --> (Vtx `  G
)  /\  ( 2nd `  B ) : ( 0 ... ( # `  ( 1st `  B
) ) ) --> (Vtx
`  G ) ) )
43 2ffzeq 12460 . . . . . . 7  |-  ( ( ( # `  ( 1st `  A ) )  e.  NN0  /\  ( 2nd `  A ) : ( 0 ... ( # `
 ( 1st `  A
) ) ) --> (Vtx
`  G )  /\  ( 2nd `  B ) : ( 0 ... ( # `  ( 1st `  B ) ) ) --> (Vtx `  G
) )  ->  (
( 2nd `  A
)  =  ( 2nd `  B )  <->  ( ( # `
 ( 1st `  A
) )  =  (
# `  ( 1st `  B ) )  /\  A. x  e.  ( 0 ... ( # `  ( 1st `  A ) ) ) ( ( 2nd `  A ) `  x
)  =  ( ( 2nd `  B ) `
 x ) ) ) )
4442, 43syl 17 . . . . . 6  |-  ( ( ( ( ( 1st `  A )  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  A ) : ( 0 ... ( # `  ( 1st `  A ) ) ) --> (Vtx `  G
) )  /\  (
( 1st `  B
)  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  B ) : ( 0 ... ( # `
 ( 1st `  B
) ) ) --> (Vtx
`  G ) ) )  /\  ( (
# `  ( 1st `  A ) )  =  ( ( # `  ( 2nd `  A ) )  -  1 )  /\  ( # `  ( 1st `  B ) )  =  ( ( # `  ( 2nd `  B ) )  -  1 ) ) )  ->  ( ( 2nd `  A )  =  ( 2nd `  B
)  <->  ( ( # `  ( 1st `  A
) )  =  (
# `  ( 1st `  B ) )  /\  A. x  e.  ( 0 ... ( # `  ( 1st `  A ) ) ) ( ( 2nd `  A ) `  x
)  =  ( ( 2nd `  B ) `
 x ) ) ) )
4535, 44anbi12d 747 . . . . 5  |-  ( ( ( ( ( 1st `  A )  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  A ) : ( 0 ... ( # `  ( 1st `  A ) ) ) --> (Vtx `  G
) )  /\  (
( 1st `  B
)  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  B ) : ( 0 ... ( # `
 ( 1st `  B
) ) ) --> (Vtx
`  G ) ) )  /\  ( (
# `  ( 1st `  A ) )  =  ( ( # `  ( 2nd `  A ) )  -  1 )  /\  ( # `  ( 1st `  B ) )  =  ( ( # `  ( 2nd `  B ) )  -  1 ) ) )  ->  ( (
( 1st `  A
)  =  ( 1st `  B )  /\  ( 2nd `  A )  =  ( 2nd `  B
) )  <->  ( (
( # `  ( 1st `  A ) )  =  ( # `  ( 1st `  B ) )  /\  A. x  e.  ( 0..^ ( # `  ( 1st `  A
) ) ) ( ( 1st `  A
) `  x )  =  ( ( 1st `  B ) `  x
) )  /\  (
( # `  ( 1st `  A ) )  =  ( # `  ( 1st `  B ) )  /\  A. x  e.  ( 0 ... ( # `
 ( 1st `  A
) ) ) ( ( 2nd `  A
) `  x )  =  ( ( 2nd `  B ) `  x
) ) ) ) )
4619, 32, 45syl2anc 693 . . . 4  |-  ( ( A  e.  (Walks `  G )  /\  B  e.  (Walks `  G )
)  ->  ( (
( 1st `  A
)  =  ( 1st `  B )  /\  ( 2nd `  A )  =  ( 2nd `  B
) )  <->  ( (
( # `  ( 1st `  A ) )  =  ( # `  ( 1st `  B ) )  /\  A. x  e.  ( 0..^ ( # `  ( 1st `  A
) ) ) ( ( 1st `  A
) `  x )  =  ( ( 1st `  B ) `  x
) )  /\  (
( # `  ( 1st `  A ) )  =  ( # `  ( 1st `  B ) )  /\  A. x  e.  ( 0 ... ( # `
 ( 1st `  A
) ) ) ( ( 2nd `  A
) `  x )  =  ( ( 2nd `  B ) `  x
) ) ) ) )
47463adant3 1081 . . 3  |-  ( ( A  e.  (Walks `  G )  /\  B  e.  (Walks `  G )  /\  N  =  ( # `
 ( 1st `  A
) ) )  -> 
( ( ( 1st `  A )  =  ( 1st `  B )  /\  ( 2nd `  A
)  =  ( 2nd `  B ) )  <->  ( (
( # `  ( 1st `  A ) )  =  ( # `  ( 1st `  B ) )  /\  A. x  e.  ( 0..^ ( # `  ( 1st `  A
) ) ) ( ( 1st `  A
) `  x )  =  ( ( 1st `  B ) `  x
) )  /\  (
( # `  ( 1st `  A ) )  =  ( # `  ( 1st `  B ) )  /\  A. x  e.  ( 0 ... ( # `
 ( 1st `  A
) ) ) ( ( 2nd `  A
) `  x )  =  ( ( 2nd `  B ) `  x
) ) ) ) )
48 eqeq1 2626 . . . . . . 7  |-  ( N  =  ( # `  ( 1st `  A ) )  ->  ( N  =  ( # `  ( 1st `  B ) )  <-> 
( # `  ( 1st `  A ) )  =  ( # `  ( 1st `  B ) ) ) )
49 oveq2 6658 . . . . . . . 8  |-  ( N  =  ( # `  ( 1st `  A ) )  ->  ( 0..^ N )  =  ( 0..^ ( # `  ( 1st `  A ) ) ) )
5049raleqdv 3144 . . . . . . 7  |-  ( N  =  ( # `  ( 1st `  A ) )  ->  ( A. x  e.  ( 0..^ N ) ( ( 1st `  A
) `  x )  =  ( ( 1st `  B ) `  x
)  <->  A. x  e.  ( 0..^ ( # `  ( 1st `  A ) ) ) ( ( 1st `  A ) `  x
)  =  ( ( 1st `  B ) `
 x ) ) )
5148, 50anbi12d 747 . . . . . 6  |-  ( N  =  ( # `  ( 1st `  A ) )  ->  ( ( N  =  ( # `  ( 1st `  B ) )  /\  A. x  e.  ( 0..^ N ) ( ( 1st `  A
) `  x )  =  ( ( 1st `  B ) `  x
) )  <->  ( ( # `
 ( 1st `  A
) )  =  (
# `  ( 1st `  B ) )  /\  A. x  e.  ( 0..^ ( # `  ( 1st `  A ) ) ) ( ( 1st `  A ) `  x
)  =  ( ( 1st `  B ) `
 x ) ) ) )
52 oveq2 6658 . . . . . . . 8  |-  ( N  =  ( # `  ( 1st `  A ) )  ->  ( 0 ... N )  =  ( 0 ... ( # `  ( 1st `  A
) ) ) )
5352raleqdv 3144 . . . . . . 7  |-  ( N  =  ( # `  ( 1st `  A ) )  ->  ( A. x  e.  ( 0 ... N
) ( ( 2nd `  A ) `  x
)  =  ( ( 2nd `  B ) `
 x )  <->  A. x  e.  ( 0 ... ( # `
 ( 1st `  A
) ) ) ( ( 2nd `  A
) `  x )  =  ( ( 2nd `  B ) `  x
) ) )
5448, 53anbi12d 747 . . . . . 6  |-  ( N  =  ( # `  ( 1st `  A ) )  ->  ( ( N  =  ( # `  ( 1st `  B ) )  /\  A. x  e.  ( 0 ... N
) ( ( 2nd `  A ) `  x
)  =  ( ( 2nd `  B ) `
 x ) )  <-> 
( ( # `  ( 1st `  A ) )  =  ( # `  ( 1st `  B ) )  /\  A. x  e.  ( 0 ... ( # `
 ( 1st `  A
) ) ) ( ( 2nd `  A
) `  x )  =  ( ( 2nd `  B ) `  x
) ) ) )
5551, 54anbi12d 747 . . . . 5  |-  ( N  =  ( # `  ( 1st `  A ) )  ->  ( ( ( N  =  ( # `  ( 1st `  B
) )  /\  A. x  e.  ( 0..^ N ) ( ( 1st `  A ) `
 x )  =  ( ( 1st `  B
) `  x )
)  /\  ( N  =  ( # `  ( 1st `  B ) )  /\  A. x  e.  ( 0 ... N
) ( ( 2nd `  A ) `  x
)  =  ( ( 2nd `  B ) `
 x ) ) )  <->  ( ( (
# `  ( 1st `  A ) )  =  ( # `  ( 1st `  B ) )  /\  A. x  e.  ( 0..^ ( # `  ( 1st `  A
) ) ) ( ( 1st `  A
) `  x )  =  ( ( 1st `  B ) `  x
) )  /\  (
( # `  ( 1st `  A ) )  =  ( # `  ( 1st `  B ) )  /\  A. x  e.  ( 0 ... ( # `
 ( 1st `  A
) ) ) ( ( 2nd `  A
) `  x )  =  ( ( 2nd `  B ) `  x
) ) ) ) )
5655bibi2d 332 . . . 4  |-  ( N  =  ( # `  ( 1st `  A ) )  ->  ( ( ( ( 1st `  A
)  =  ( 1st `  B )  /\  ( 2nd `  A )  =  ( 2nd `  B
) )  <->  ( ( N  =  ( # `  ( 1st `  B ) )  /\  A. x  e.  ( 0..^ N ) ( ( 1st `  A
) `  x )  =  ( ( 1st `  B ) `  x
) )  /\  ( N  =  ( # `  ( 1st `  B ) )  /\  A. x  e.  ( 0 ... N
) ( ( 2nd `  A ) `  x
)  =  ( ( 2nd `  B ) `
 x ) ) ) )  <->  ( (
( 1st `  A
)  =  ( 1st `  B )  /\  ( 2nd `  A )  =  ( 2nd `  B
) )  <->  ( (
( # `  ( 1st `  A ) )  =  ( # `  ( 1st `  B ) )  /\  A. x  e.  ( 0..^ ( # `  ( 1st `  A
) ) ) ( ( 1st `  A
) `  x )  =  ( ( 1st `  B ) `  x
) )  /\  (
( # `  ( 1st `  A ) )  =  ( # `  ( 1st `  B ) )  /\  A. x  e.  ( 0 ... ( # `
 ( 1st `  A
) ) ) ( ( 2nd `  A
) `  x )  =  ( ( 2nd `  B ) `  x
) ) ) ) ) )
57563ad2ant3 1084 . . 3  |-  ( ( A  e.  (Walks `  G )  /\  B  e.  (Walks `  G )  /\  N  =  ( # `
 ( 1st `  A
) ) )  -> 
( ( ( ( 1st `  A )  =  ( 1st `  B
)  /\  ( 2nd `  A )  =  ( 2nd `  B ) )  <->  ( ( N  =  ( # `  ( 1st `  B ) )  /\  A. x  e.  ( 0..^ N ) ( ( 1st `  A
) `  x )  =  ( ( 1st `  B ) `  x
) )  /\  ( N  =  ( # `  ( 1st `  B ) )  /\  A. x  e.  ( 0 ... N
) ( ( 2nd `  A ) `  x
)  =  ( ( 2nd `  B ) `
 x ) ) ) )  <->  ( (
( 1st `  A
)  =  ( 1st `  B )  /\  ( 2nd `  A )  =  ( 2nd `  B
) )  <->  ( (
( # `  ( 1st `  A ) )  =  ( # `  ( 1st `  B ) )  /\  A. x  e.  ( 0..^ ( # `  ( 1st `  A
) ) ) ( ( 1st `  A
) `  x )  =  ( ( 1st `  B ) `  x
) )  /\  (
( # `  ( 1st `  A ) )  =  ( # `  ( 1st `  B ) )  /\  A. x  e.  ( 0 ... ( # `
 ( 1st `  A
) ) ) ( ( 2nd `  A
) `  x )  =  ( ( 2nd `  B ) `  x
) ) ) ) ) )
5847, 57mpbird 247 . 2  |-  ( ( A  e.  (Walks `  G )  /\  B  e.  (Walks `  G )  /\  N  =  ( # `
 ( 1st `  A
) ) )  -> 
( ( ( 1st `  A )  =  ( 1st `  B )  /\  ( 2nd `  A
)  =  ( 2nd `  B ) )  <->  ( ( N  =  ( # `  ( 1st `  B ) )  /\  A. x  e.  ( 0..^ N ) ( ( 1st `  A
) `  x )  =  ( ( 1st `  B ) `  x
) )  /\  ( N  =  ( # `  ( 1st `  B ) )  /\  A. x  e.  ( 0 ... N
) ( ( 2nd `  A ) `  x
)  =  ( ( 2nd `  B ) `
 x ) ) ) ) )
59 3anass 1042 . . . 4  |-  ( ( N  =  ( # `  ( 1st `  B
) )  /\  A. x  e.  ( 0..^ N ) ( ( 1st `  A ) `
 x )  =  ( ( 1st `  B
) `  x )  /\  A. x  e.  ( 0 ... N ) ( ( 2nd `  A
) `  x )  =  ( ( 2nd `  B ) `  x
) )  <->  ( N  =  ( # `  ( 1st `  B ) )  /\  ( A. x  e.  ( 0..^ N ) ( ( 1st `  A
) `  x )  =  ( ( 1st `  B ) `  x
)  /\  A. x  e.  ( 0 ... N
) ( ( 2nd `  A ) `  x
)  =  ( ( 2nd `  B ) `
 x ) ) ) )
60 anandi 871 . . . 4  |-  ( ( N  =  ( # `  ( 1st `  B
) )  /\  ( A. x  e.  (
0..^ N ) ( ( 1st `  A
) `  x )  =  ( ( 1st `  B ) `  x
)  /\  A. x  e.  ( 0 ... N
) ( ( 2nd `  A ) `  x
)  =  ( ( 2nd `  B ) `
 x ) ) )  <->  ( ( N  =  ( # `  ( 1st `  B ) )  /\  A. x  e.  ( 0..^ N ) ( ( 1st `  A
) `  x )  =  ( ( 1st `  B ) `  x
) )  /\  ( N  =  ( # `  ( 1st `  B ) )  /\  A. x  e.  ( 0 ... N
) ( ( 2nd `  A ) `  x
)  =  ( ( 2nd `  B ) `
 x ) ) ) )
6159, 60bitr2i 265 . . 3  |-  ( ( ( N  =  (
# `  ( 1st `  B ) )  /\  A. x  e.  ( 0..^ N ) ( ( 1st `  A ) `
 x )  =  ( ( 1st `  B
) `  x )
)  /\  ( N  =  ( # `  ( 1st `  B ) )  /\  A. x  e.  ( 0 ... N
) ( ( 2nd `  A ) `  x
)  =  ( ( 2nd `  B ) `
 x ) ) )  <->  ( N  =  ( # `  ( 1st `  B ) )  /\  A. x  e.  ( 0..^ N ) ( ( 1st `  A
) `  x )  =  ( ( 1st `  B ) `  x
)  /\  A. x  e.  ( 0 ... N
) ( ( 2nd `  A ) `  x
)  =  ( ( 2nd `  B ) `
 x ) ) )
6261a1i 11 . 2  |-  ( ( A  e.  (Walks `  G )  /\  B  e.  (Walks `  G )  /\  N  =  ( # `
 ( 1st `  A
) ) )  -> 
( ( ( N  =  ( # `  ( 1st `  B ) )  /\  A. x  e.  ( 0..^ N ) ( ( 1st `  A
) `  x )  =  ( ( 1st `  B ) `  x
) )  /\  ( N  =  ( # `  ( 1st `  B ) )  /\  A. x  e.  ( 0 ... N
) ( ( 2nd `  A ) `  x
)  =  ( ( 2nd `  B ) `
 x ) ) )  <->  ( N  =  ( # `  ( 1st `  B ) )  /\  A. x  e.  ( 0..^ N ) ( ( 1st `  A
) `  x )  =  ( ( 1st `  B ) `  x
)  /\  A. x  e.  ( 0 ... N
) ( ( 2nd `  A ) `  x
)  =  ( ( 2nd `  B ) `
 x ) ) ) )
6310, 58, 623bitrd 294 1  |-  ( ( A  e.  (Walks `  G )  /\  B  e.  (Walks `  G )  /\  N  =  ( # `
 ( 1st `  A
) ) )  -> 
( A  =  B  <-> 
( N  =  (
# `  ( 1st `  B ) )  /\  A. x  e.  ( 0..^ N ) ( ( 1st `  A ) `
 x )  =  ( ( 1st `  B
) `  x )  /\  A. x  e.  ( 0 ... N ) ( ( 2nd `  A
) `  x )  =  ( ( 2nd `  B ) `  x
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200   <.cop 4183   class class class wbr 4653    X. cxp 5112   dom cdm 5114   -->wf 5884   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   0cc0 9936   1c1 9937    - cmin 10266   NN0cn0 11292   ...cfz 12326  ..^cfzo 12465   #chash 13117  Word cword 13291  Vtxcvtx 25874  iEdgciedg 25875  Walkscwlks 26492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-wlks 26495
This theorem is referenced by:  uspgr2wlkeq  26542
  Copyright terms: Public domain W3C validator