MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlktovf1 Structured version   Visualization version   GIF version

Theorem wwlktovf1 13700
Description: Lemma 2 for wrd2f1tovbij 13703. (Contributed by Alexander van der Vekens, 27-Jul-2018.)
Hypotheses
Ref Expression
wrd2f1tovbij.d 𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((#‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)}
wrd2f1tovbij.r 𝑅 = {𝑛𝑉 ∣ {𝑃, 𝑛} ∈ 𝑋}
wrd2f1tovbij.f 𝐹 = (𝑡𝐷 ↦ (𝑡‘1))
Assertion
Ref Expression
wwlktovf1 𝐹:𝐷1-1𝑅
Distinct variable groups:   𝑡,𝐷   𝑃,𝑛,𝑡,𝑤   𝑡,𝑅   𝑛,𝑉,𝑡,𝑤   𝑛,𝑋,𝑤
Allowed substitution hints:   𝐷(𝑤,𝑛)   𝑅(𝑤,𝑛)   𝐹(𝑤,𝑡,𝑛)   𝑋(𝑡)

Proof of Theorem wwlktovf1
Dummy variables 𝑥 𝑦 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wrd2f1tovbij.d . . 3 𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((#‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)}
2 wrd2f1tovbij.r . . 3 𝑅 = {𝑛𝑉 ∣ {𝑃, 𝑛} ∈ 𝑋}
3 wrd2f1tovbij.f . . 3 𝐹 = (𝑡𝐷 ↦ (𝑡‘1))
41, 2, 3wwlktovf 13699 . 2 𝐹:𝐷𝑅
5 fveq1 6190 . . . . . 6 (𝑡 = 𝑥 → (𝑡‘1) = (𝑥‘1))
6 fvex 6201 . . . . . 6 (𝑥‘1) ∈ V
75, 3, 6fvmpt 6282 . . . . 5 (𝑥𝐷 → (𝐹𝑥) = (𝑥‘1))
8 fveq1 6190 . . . . . 6 (𝑡 = 𝑦 → (𝑡‘1) = (𝑦‘1))
9 fvex 6201 . . . . . 6 (𝑦‘1) ∈ V
108, 3, 9fvmpt 6282 . . . . 5 (𝑦𝐷 → (𝐹𝑦) = (𝑦‘1))
117, 10eqeqan12d 2638 . . . 4 ((𝑥𝐷𝑦𝐷) → ((𝐹𝑥) = (𝐹𝑦) ↔ (𝑥‘1) = (𝑦‘1)))
12 fveq2 6191 . . . . . . . 8 (𝑤 = 𝑥 → (#‘𝑤) = (#‘𝑥))
1312eqeq1d 2624 . . . . . . 7 (𝑤 = 𝑥 → ((#‘𝑤) = 2 ↔ (#‘𝑥) = 2))
14 fveq1 6190 . . . . . . . 8 (𝑤 = 𝑥 → (𝑤‘0) = (𝑥‘0))
1514eqeq1d 2624 . . . . . . 7 (𝑤 = 𝑥 → ((𝑤‘0) = 𝑃 ↔ (𝑥‘0) = 𝑃))
16 fveq1 6190 . . . . . . . . 9 (𝑤 = 𝑥 → (𝑤‘1) = (𝑥‘1))
1714, 16preq12d 4276 . . . . . . . 8 (𝑤 = 𝑥 → {(𝑤‘0), (𝑤‘1)} = {(𝑥‘0), (𝑥‘1)})
1817eleq1d 2686 . . . . . . 7 (𝑤 = 𝑥 → ({(𝑤‘0), (𝑤‘1)} ∈ 𝑋 ↔ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋))
1913, 15, 183anbi123d 1399 . . . . . 6 (𝑤 = 𝑥 → (((#‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋) ↔ ((#‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)))
2019, 1elrab2 3366 . . . . 5 (𝑥𝐷 ↔ (𝑥 ∈ Word 𝑉 ∧ ((#‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)))
21 fveq2 6191 . . . . . . . 8 (𝑤 = 𝑦 → (#‘𝑤) = (#‘𝑦))
2221eqeq1d 2624 . . . . . . 7 (𝑤 = 𝑦 → ((#‘𝑤) = 2 ↔ (#‘𝑦) = 2))
23 fveq1 6190 . . . . . . . 8 (𝑤 = 𝑦 → (𝑤‘0) = (𝑦‘0))
2423eqeq1d 2624 . . . . . . 7 (𝑤 = 𝑦 → ((𝑤‘0) = 𝑃 ↔ (𝑦‘0) = 𝑃))
25 fveq1 6190 . . . . . . . . 9 (𝑤 = 𝑦 → (𝑤‘1) = (𝑦‘1))
2623, 25preq12d 4276 . . . . . . . 8 (𝑤 = 𝑦 → {(𝑤‘0), (𝑤‘1)} = {(𝑦‘0), (𝑦‘1)})
2726eleq1d 2686 . . . . . . 7 (𝑤 = 𝑦 → ({(𝑤‘0), (𝑤‘1)} ∈ 𝑋 ↔ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))
2822, 24, 273anbi123d 1399 . . . . . 6 (𝑤 = 𝑦 → (((#‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋) ↔ ((#‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋)))
2928, 1elrab2 3366 . . . . 5 (𝑦𝐷 ↔ (𝑦 ∈ Word 𝑉 ∧ ((#‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋)))
30 simp1 1061 . . . . . . . . . 10 (((#‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋) → (#‘𝑥) = 2)
3130adantl 482 . . . . . . . . 9 ((𝑥 ∈ Word 𝑉 ∧ ((#‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) → (#‘𝑥) = 2)
32 simp1 1061 . . . . . . . . . . 11 (((#‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋) → (#‘𝑦) = 2)
3332eqcomd 2628 . . . . . . . . . 10 (((#‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋) → 2 = (#‘𝑦))
3433adantl 482 . . . . . . . . 9 ((𝑦 ∈ Word 𝑉 ∧ ((#‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋)) → 2 = (#‘𝑦))
3531, 34sylan9eq 2676 . . . . . . . 8 (((𝑥 ∈ Word 𝑉 ∧ ((#‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) ∧ (𝑦 ∈ Word 𝑉 ∧ ((#‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) → (#‘𝑥) = (#‘𝑦))
3635adantr 481 . . . . . . 7 ((((𝑥 ∈ Word 𝑉 ∧ ((#‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) ∧ (𝑦 ∈ Word 𝑉 ∧ ((#‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) ∧ (𝑥‘1) = (𝑦‘1)) → (#‘𝑥) = (#‘𝑦))
37 simp2 1062 . . . . . . . . . . 11 (((#‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋) → (𝑥‘0) = 𝑃)
3837adantl 482 . . . . . . . . . 10 ((𝑥 ∈ Word 𝑉 ∧ ((#‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) → (𝑥‘0) = 𝑃)
39 simp2 1062 . . . . . . . . . . . 12 (((#‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋) → (𝑦‘0) = 𝑃)
4039eqcomd 2628 . . . . . . . . . . 11 (((#‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋) → 𝑃 = (𝑦‘0))
4140adantl 482 . . . . . . . . . 10 ((𝑦 ∈ Word 𝑉 ∧ ((#‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋)) → 𝑃 = (𝑦‘0))
4238, 41sylan9eq 2676 . . . . . . . . 9 (((𝑥 ∈ Word 𝑉 ∧ ((#‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) ∧ (𝑦 ∈ Word 𝑉 ∧ ((#‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) → (𝑥‘0) = (𝑦‘0))
4342adantr 481 . . . . . . . 8 ((((𝑥 ∈ Word 𝑉 ∧ ((#‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) ∧ (𝑦 ∈ Word 𝑉 ∧ ((#‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) ∧ (𝑥‘1) = (𝑦‘1)) → (𝑥‘0) = (𝑦‘0))
44 simpr 477 . . . . . . . 8 ((((𝑥 ∈ Word 𝑉 ∧ ((#‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) ∧ (𝑦 ∈ Word 𝑉 ∧ ((#‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) ∧ (𝑥‘1) = (𝑦‘1)) → (𝑥‘1) = (𝑦‘1))
45 oveq2 6658 . . . . . . . . . . . . 13 ((#‘𝑥) = 2 → (0..^(#‘𝑥)) = (0..^2))
46 fzo0to2pr 12553 . . . . . . . . . . . . 13 (0..^2) = {0, 1}
4745, 46syl6eq 2672 . . . . . . . . . . . 12 ((#‘𝑥) = 2 → (0..^(#‘𝑥)) = {0, 1})
4847raleqdv 3144 . . . . . . . . . . 11 ((#‘𝑥) = 2 → (∀𝑖 ∈ (0..^(#‘𝑥))(𝑥𝑖) = (𝑦𝑖) ↔ ∀𝑖 ∈ {0, 1} (𝑥𝑖) = (𝑦𝑖)))
49 c0ex 10034 . . . . . . . . . . . 12 0 ∈ V
50 1ex 10035 . . . . . . . . . . . 12 1 ∈ V
51 fveq2 6191 . . . . . . . . . . . . 13 (𝑖 = 0 → (𝑥𝑖) = (𝑥‘0))
52 fveq2 6191 . . . . . . . . . . . . 13 (𝑖 = 0 → (𝑦𝑖) = (𝑦‘0))
5351, 52eqeq12d 2637 . . . . . . . . . . . 12 (𝑖 = 0 → ((𝑥𝑖) = (𝑦𝑖) ↔ (𝑥‘0) = (𝑦‘0)))
54 fveq2 6191 . . . . . . . . . . . . 13 (𝑖 = 1 → (𝑥𝑖) = (𝑥‘1))
55 fveq2 6191 . . . . . . . . . . . . 13 (𝑖 = 1 → (𝑦𝑖) = (𝑦‘1))
5654, 55eqeq12d 2637 . . . . . . . . . . . 12 (𝑖 = 1 → ((𝑥𝑖) = (𝑦𝑖) ↔ (𝑥‘1) = (𝑦‘1)))
5749, 50, 53, 56ralpr 4238 . . . . . . . . . . 11 (∀𝑖 ∈ {0, 1} (𝑥𝑖) = (𝑦𝑖) ↔ ((𝑥‘0) = (𝑦‘0) ∧ (𝑥‘1) = (𝑦‘1)))
5848, 57syl6bb 276 . . . . . . . . . 10 ((#‘𝑥) = 2 → (∀𝑖 ∈ (0..^(#‘𝑥))(𝑥𝑖) = (𝑦𝑖) ↔ ((𝑥‘0) = (𝑦‘0) ∧ (𝑥‘1) = (𝑦‘1))))
59583ad2ant1 1082 . . . . . . . . 9 (((#‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋) → (∀𝑖 ∈ (0..^(#‘𝑥))(𝑥𝑖) = (𝑦𝑖) ↔ ((𝑥‘0) = (𝑦‘0) ∧ (𝑥‘1) = (𝑦‘1))))
6059ad3antlr 767 . . . . . . . 8 ((((𝑥 ∈ Word 𝑉 ∧ ((#‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) ∧ (𝑦 ∈ Word 𝑉 ∧ ((#‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) ∧ (𝑥‘1) = (𝑦‘1)) → (∀𝑖 ∈ (0..^(#‘𝑥))(𝑥𝑖) = (𝑦𝑖) ↔ ((𝑥‘0) = (𝑦‘0) ∧ (𝑥‘1) = (𝑦‘1))))
6143, 44, 60mpbir2and 957 . . . . . . 7 ((((𝑥 ∈ Word 𝑉 ∧ ((#‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) ∧ (𝑦 ∈ Word 𝑉 ∧ ((#‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) ∧ (𝑥‘1) = (𝑦‘1)) → ∀𝑖 ∈ (0..^(#‘𝑥))(𝑥𝑖) = (𝑦𝑖))
62 simpl 473 . . . . . . . . . 10 ((𝑥 ∈ Word 𝑉 ∧ ((#‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) → 𝑥 ∈ Word 𝑉)
63 simpl 473 . . . . . . . . . 10 ((𝑦 ∈ Word 𝑉 ∧ ((#‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋)) → 𝑦 ∈ Word 𝑉)
6462, 63anim12i 590 . . . . . . . . 9 (((𝑥 ∈ Word 𝑉 ∧ ((#‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) ∧ (𝑦 ∈ Word 𝑉 ∧ ((#‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) → (𝑥 ∈ Word 𝑉𝑦 ∈ Word 𝑉))
6564adantr 481 . . . . . . . 8 ((((𝑥 ∈ Word 𝑉 ∧ ((#‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) ∧ (𝑦 ∈ Word 𝑉 ∧ ((#‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) ∧ (𝑥‘1) = (𝑦‘1)) → (𝑥 ∈ Word 𝑉𝑦 ∈ Word 𝑉))
66 eqwrd 13346 . . . . . . . 8 ((𝑥 ∈ Word 𝑉𝑦 ∈ Word 𝑉) → (𝑥 = 𝑦 ↔ ((#‘𝑥) = (#‘𝑦) ∧ ∀𝑖 ∈ (0..^(#‘𝑥))(𝑥𝑖) = (𝑦𝑖))))
6765, 66syl 17 . . . . . . 7 ((((𝑥 ∈ Word 𝑉 ∧ ((#‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) ∧ (𝑦 ∈ Word 𝑉 ∧ ((#‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) ∧ (𝑥‘1) = (𝑦‘1)) → (𝑥 = 𝑦 ↔ ((#‘𝑥) = (#‘𝑦) ∧ ∀𝑖 ∈ (0..^(#‘𝑥))(𝑥𝑖) = (𝑦𝑖))))
6836, 61, 67mpbir2and 957 . . . . . 6 ((((𝑥 ∈ Word 𝑉 ∧ ((#‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) ∧ (𝑦 ∈ Word 𝑉 ∧ ((#‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) ∧ (𝑥‘1) = (𝑦‘1)) → 𝑥 = 𝑦)
6968ex 450 . . . . 5 (((𝑥 ∈ Word 𝑉 ∧ ((#‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) ∧ (𝑦 ∈ Word 𝑉 ∧ ((#‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) → ((𝑥‘1) = (𝑦‘1) → 𝑥 = 𝑦))
7020, 29, 69syl2anb 496 . . . 4 ((𝑥𝐷𝑦𝐷) → ((𝑥‘1) = (𝑦‘1) → 𝑥 = 𝑦))
7111, 70sylbid 230 . . 3 ((𝑥𝐷𝑦𝐷) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
7271rgen2a 2977 . 2 𝑥𝐷𝑦𝐷 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)
73 dff13 6512 . 2 (𝐹:𝐷1-1𝑅 ↔ (𝐹:𝐷𝑅 ∧ ∀𝑥𝐷𝑦𝐷 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
744, 72, 73mpbir2an 955 1 𝐹:𝐷1-1𝑅
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  {crab 2916  {cpr 4179  cmpt 4729  wf 5884  1-1wf1 5885  cfv 5888  (class class class)co 6650  0cc0 9936  1c1 9937  2c2 11070  ..^cfzo 12465  #chash 13117  Word cword 13291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299
This theorem is referenced by:  wwlktovf1o  13702
  Copyright terms: Public domain W3C validator