![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wwlktovf | Structured version Visualization version GIF version |
Description: Lemma 1 for wrd2f1tovbij 13703. (Contributed by Alexander van der Vekens, 27-Jul-2018.) |
Ref | Expression |
---|---|
wrd2f1tovbij.d | ⊢ 𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((#‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)} |
wrd2f1tovbij.r | ⊢ 𝑅 = {𝑛 ∈ 𝑉 ∣ {𝑃, 𝑛} ∈ 𝑋} |
wrd2f1tovbij.f | ⊢ 𝐹 = (𝑡 ∈ 𝐷 ↦ (𝑡‘1)) |
Ref | Expression |
---|---|
wwlktovf | ⊢ 𝐹:𝐷⟶𝑅 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wrd2f1tovbij.f | . 2 ⊢ 𝐹 = (𝑡 ∈ 𝐷 ↦ (𝑡‘1)) | |
2 | wrdf 13310 | . . . . 5 ⊢ (𝑡 ∈ Word 𝑉 → 𝑡:(0..^(#‘𝑡))⟶𝑉) | |
3 | oveq2 6658 | . . . . . . . 8 ⊢ ((#‘𝑡) = 2 → (0..^(#‘𝑡)) = (0..^2)) | |
4 | 3 | feq2d 6031 | . . . . . . 7 ⊢ ((#‘𝑡) = 2 → (𝑡:(0..^(#‘𝑡))⟶𝑉 ↔ 𝑡:(0..^2)⟶𝑉)) |
5 | 1nn0 11308 | . . . . . . . . 9 ⊢ 1 ∈ ℕ0 | |
6 | 2nn 11185 | . . . . . . . . 9 ⊢ 2 ∈ ℕ | |
7 | 1lt2 11194 | . . . . . . . . 9 ⊢ 1 < 2 | |
8 | elfzo0 12508 | . . . . . . . . 9 ⊢ (1 ∈ (0..^2) ↔ (1 ∈ ℕ0 ∧ 2 ∈ ℕ ∧ 1 < 2)) | |
9 | 5, 6, 7, 8 | mpbir3an 1244 | . . . . . . . 8 ⊢ 1 ∈ (0..^2) |
10 | ffvelrn 6357 | . . . . . . . 8 ⊢ ((𝑡:(0..^2)⟶𝑉 ∧ 1 ∈ (0..^2)) → (𝑡‘1) ∈ 𝑉) | |
11 | 9, 10 | mpan2 707 | . . . . . . 7 ⊢ (𝑡:(0..^2)⟶𝑉 → (𝑡‘1) ∈ 𝑉) |
12 | 4, 11 | syl6bi 243 | . . . . . 6 ⊢ ((#‘𝑡) = 2 → (𝑡:(0..^(#‘𝑡))⟶𝑉 → (𝑡‘1) ∈ 𝑉)) |
13 | 12 | 3ad2ant1 1082 | . . . . 5 ⊢ (((#‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋) → (𝑡:(0..^(#‘𝑡))⟶𝑉 → (𝑡‘1) ∈ 𝑉)) |
14 | 2, 13 | mpan9 486 | . . . 4 ⊢ ((𝑡 ∈ Word 𝑉 ∧ ((#‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)) → (𝑡‘1) ∈ 𝑉) |
15 | preq1 4268 | . . . . . . . 8 ⊢ ((𝑡‘0) = 𝑃 → {(𝑡‘0), (𝑡‘1)} = {𝑃, (𝑡‘1)}) | |
16 | 15 | eleq1d 2686 | . . . . . . 7 ⊢ ((𝑡‘0) = 𝑃 → ({(𝑡‘0), (𝑡‘1)} ∈ 𝑋 ↔ {𝑃, (𝑡‘1)} ∈ 𝑋)) |
17 | 16 | biimpa 501 | . . . . . 6 ⊢ (((𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋) → {𝑃, (𝑡‘1)} ∈ 𝑋) |
18 | 17 | 3adant1 1079 | . . . . 5 ⊢ (((#‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋) → {𝑃, (𝑡‘1)} ∈ 𝑋) |
19 | 18 | adantl 482 | . . . 4 ⊢ ((𝑡 ∈ Word 𝑉 ∧ ((#‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)) → {𝑃, (𝑡‘1)} ∈ 𝑋) |
20 | 14, 19 | jca 554 | . . 3 ⊢ ((𝑡 ∈ Word 𝑉 ∧ ((#‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)) → ((𝑡‘1) ∈ 𝑉 ∧ {𝑃, (𝑡‘1)} ∈ 𝑋)) |
21 | fveq2 6191 | . . . . . 6 ⊢ (𝑤 = 𝑡 → (#‘𝑤) = (#‘𝑡)) | |
22 | 21 | eqeq1d 2624 | . . . . 5 ⊢ (𝑤 = 𝑡 → ((#‘𝑤) = 2 ↔ (#‘𝑡) = 2)) |
23 | fveq1 6190 | . . . . . 6 ⊢ (𝑤 = 𝑡 → (𝑤‘0) = (𝑡‘0)) | |
24 | 23 | eqeq1d 2624 | . . . . 5 ⊢ (𝑤 = 𝑡 → ((𝑤‘0) = 𝑃 ↔ (𝑡‘0) = 𝑃)) |
25 | fveq1 6190 | . . . . . . 7 ⊢ (𝑤 = 𝑡 → (𝑤‘1) = (𝑡‘1)) | |
26 | 23, 25 | preq12d 4276 | . . . . . 6 ⊢ (𝑤 = 𝑡 → {(𝑤‘0), (𝑤‘1)} = {(𝑡‘0), (𝑡‘1)}) |
27 | 26 | eleq1d 2686 | . . . . 5 ⊢ (𝑤 = 𝑡 → ({(𝑤‘0), (𝑤‘1)} ∈ 𝑋 ↔ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)) |
28 | 22, 24, 27 | 3anbi123d 1399 | . . . 4 ⊢ (𝑤 = 𝑡 → (((#‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋) ↔ ((#‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋))) |
29 | wrd2f1tovbij.d | . . . 4 ⊢ 𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((#‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)} | |
30 | 28, 29 | elrab2 3366 | . . 3 ⊢ (𝑡 ∈ 𝐷 ↔ (𝑡 ∈ Word 𝑉 ∧ ((#‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋))) |
31 | preq2 4269 | . . . . 5 ⊢ (𝑛 = (𝑡‘1) → {𝑃, 𝑛} = {𝑃, (𝑡‘1)}) | |
32 | 31 | eleq1d 2686 | . . . 4 ⊢ (𝑛 = (𝑡‘1) → ({𝑃, 𝑛} ∈ 𝑋 ↔ {𝑃, (𝑡‘1)} ∈ 𝑋)) |
33 | wrd2f1tovbij.r | . . . 4 ⊢ 𝑅 = {𝑛 ∈ 𝑉 ∣ {𝑃, 𝑛} ∈ 𝑋} | |
34 | 32, 33 | elrab2 3366 | . . 3 ⊢ ((𝑡‘1) ∈ 𝑅 ↔ ((𝑡‘1) ∈ 𝑉 ∧ {𝑃, (𝑡‘1)} ∈ 𝑋)) |
35 | 20, 30, 34 | 3imtr4i 281 | . 2 ⊢ (𝑡 ∈ 𝐷 → (𝑡‘1) ∈ 𝑅) |
36 | 1, 35 | fmpti 6383 | 1 ⊢ 𝐹:𝐷⟶𝑅 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 {crab 2916 {cpr 4179 class class class wbr 4653 ↦ cmpt 4729 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 0cc0 9936 1c1 9937 < clt 10074 ℕcn 11020 2c2 11070 ℕ0cn0 11292 ..^cfzo 12465 #chash 13117 Word cword 13291 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-fzo 12466 df-hash 13118 df-word 13299 |
This theorem is referenced by: wwlktovf1 13700 wwlktovfo 13701 |
Copyright terms: Public domain | W3C validator |