MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  yonpropd Structured version   Visualization version   GIF version

Theorem yonpropd 16908
Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same Yoneda functor. (Contributed by Mario Carneiro, 26-Jan-2017.)
Hypotheses
Ref Expression
hofpropd.1 (𝜑 → (Homf𝐶) = (Homf𝐷))
hofpropd.2 (𝜑 → (compf𝐶) = (compf𝐷))
hofpropd.c (𝜑𝐶 ∈ Cat)
hofpropd.d (𝜑𝐷 ∈ Cat)
Assertion
Ref Expression
yonpropd (𝜑 → (Yon‘𝐶) = (Yon‘𝐷))

Proof of Theorem yonpropd
StepHypRef Expression
1 hofpropd.1 . . . 4 (𝜑 → (Homf𝐶) = (Homf𝐷))
2 hofpropd.2 . . . 4 (𝜑 → (compf𝐶) = (compf𝐷))
31oppchomfpropd 16386 . . . 4 (𝜑 → (Homf ‘(oppCat‘𝐶)) = (Homf ‘(oppCat‘𝐷)))
41, 2oppccomfpropd 16387 . . . 4 (𝜑 → (compf‘(oppCat‘𝐶)) = (compf‘(oppCat‘𝐷)))
5 hofpropd.c . . . 4 (𝜑𝐶 ∈ Cat)
6 hofpropd.d . . . 4 (𝜑𝐷 ∈ Cat)
7 eqid 2622 . . . . . 6 (oppCat‘𝐶) = (oppCat‘𝐶)
87oppccat 16382 . . . . 5 (𝐶 ∈ Cat → (oppCat‘𝐶) ∈ Cat)
95, 8syl 17 . . . 4 (𝜑 → (oppCat‘𝐶) ∈ Cat)
10 eqid 2622 . . . . . 6 (oppCat‘𝐷) = (oppCat‘𝐷)
1110oppccat 16382 . . . . 5 (𝐷 ∈ Cat → (oppCat‘𝐷) ∈ Cat)
126, 11syl 17 . . . 4 (𝜑 → (oppCat‘𝐷) ∈ Cat)
13 eqid 2622 . . . . 5 (HomF‘(oppCat‘𝐶)) = (HomF‘(oppCat‘𝐶))
14 eqid 2622 . . . . 5 (SetCat‘ran (Homf𝐶)) = (SetCat‘ran (Homf𝐶))
15 fvex 6201 . . . . . . 7 (Homf𝐶) ∈ V
1615rnex 7100 . . . . . 6 ran (Homf𝐶) ∈ V
1716a1i 11 . . . . 5 (𝜑 → ran (Homf𝐶) ∈ V)
18 ssid 3624 . . . . . 6 ran (Homf𝐶) ⊆ ran (Homf𝐶)
1918a1i 11 . . . . 5 (𝜑 → ran (Homf𝐶) ⊆ ran (Homf𝐶))
207, 13, 14, 5, 17, 19oppchofcl 16900 . . . 4 (𝜑 → (HomF‘(oppCat‘𝐶)) ∈ ((𝐶 ×c (oppCat‘𝐶)) Func (SetCat‘ran (Homf𝐶))))
211, 2, 3, 4, 5, 6, 9, 12, 20curfpropd 16873 . . 3 (𝜑 → (⟨𝐶, (oppCat‘𝐶)⟩ curryF (HomF‘(oppCat‘𝐶))) = (⟨𝐷, (oppCat‘𝐷)⟩ curryF (HomF‘(oppCat‘𝐶))))
223, 4, 9, 12hofpropd 16907 . . . 4 (𝜑 → (HomF‘(oppCat‘𝐶)) = (HomF‘(oppCat‘𝐷)))
2322oveq2d 6666 . . 3 (𝜑 → (⟨𝐷, (oppCat‘𝐷)⟩ curryF (HomF‘(oppCat‘𝐶))) = (⟨𝐷, (oppCat‘𝐷)⟩ curryF (HomF‘(oppCat‘𝐷))))
2421, 23eqtrd 2656 . 2 (𝜑 → (⟨𝐶, (oppCat‘𝐶)⟩ curryF (HomF‘(oppCat‘𝐶))) = (⟨𝐷, (oppCat‘𝐷)⟩ curryF (HomF‘(oppCat‘𝐷))))
25 eqid 2622 . . 3 (Yon‘𝐶) = (Yon‘𝐶)
2625, 5, 7, 13yonval 16901 . 2 (𝜑 → (Yon‘𝐶) = (⟨𝐶, (oppCat‘𝐶)⟩ curryF (HomF‘(oppCat‘𝐶))))
27 eqid 2622 . . 3 (Yon‘𝐷) = (Yon‘𝐷)
28 eqid 2622 . . 3 (HomF‘(oppCat‘𝐷)) = (HomF‘(oppCat‘𝐷))
2927, 6, 10, 28yonval 16901 . 2 (𝜑 → (Yon‘𝐷) = (⟨𝐷, (oppCat‘𝐷)⟩ curryF (HomF‘(oppCat‘𝐷))))
3024, 26, 293eqtr4d 2666 1 (𝜑 → (Yon‘𝐶) = (Yon‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  Vcvv 3200  wss 3574  cop 4183  ran crn 5115  cfv 5888  (class class class)co 6650  Catccat 16325  Homf chomf 16327  compfccomf 16328  oppCatcoppc 16371  SetCatcsetc 16725   curryF ccurf 16850  HomFchof 16888  Yoncyon 16889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-hom 15966  df-cco 15967  df-cat 16329  df-cid 16330  df-homf 16331  df-comf 16332  df-oppc 16372  df-func 16518  df-setc 16726  df-xpc 16812  df-curf 16854  df-hof 16890  df-yon 16891
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator