![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > zofldiv2 | Structured version Visualization version GIF version |
Description: The floor of an odd integer divided by 2 is equal to the integer first decreased by 1 and then divided by 2. (Contributed by AV, 7-Jun-2020.) |
Ref | Expression |
---|---|
zofldiv2 | ⊢ ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (⌊‘(𝑁 / 2)) = ((𝑁 − 1) / 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zcn 11382 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
2 | npcan1 10455 | . . . . . . . 8 ⊢ (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁) | |
3 | 2 | eqcomd 2628 | . . . . . . 7 ⊢ (𝑁 ∈ ℂ → 𝑁 = ((𝑁 − 1) + 1)) |
4 | 1, 3 | syl 17 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 𝑁 = ((𝑁 − 1) + 1)) |
5 | 4 | oveq1d 6665 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (𝑁 / 2) = (((𝑁 − 1) + 1) / 2)) |
6 | peano2zm 11420 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) | |
7 | 6 | zcnd 11483 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℂ) |
8 | 1cnd 10056 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 1 ∈ ℂ) | |
9 | 2cnne0 11242 | . . . . . . 7 ⊢ (2 ∈ ℂ ∧ 2 ≠ 0) | |
10 | 9 | a1i 11 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (2 ∈ ℂ ∧ 2 ≠ 0)) |
11 | divdir 10710 | . . . . . 6 ⊢ (((𝑁 − 1) ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((𝑁 − 1) + 1) / 2) = (((𝑁 − 1) / 2) + (1 / 2))) | |
12 | 7, 8, 10, 11 | syl3anc 1326 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (((𝑁 − 1) + 1) / 2) = (((𝑁 − 1) / 2) + (1 / 2))) |
13 | 5, 12 | eqtrd 2656 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑁 / 2) = (((𝑁 − 1) / 2) + (1 / 2))) |
14 | 13 | fveq2d 6195 | . . 3 ⊢ (𝑁 ∈ ℤ → (⌊‘(𝑁 / 2)) = (⌊‘(((𝑁 − 1) / 2) + (1 / 2)))) |
15 | 14 | adantr 481 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (⌊‘(𝑁 / 2)) = (⌊‘(((𝑁 − 1) / 2) + (1 / 2)))) |
16 | halfge0 11249 | . . . 4 ⊢ 0 ≤ (1 / 2) | |
17 | halflt1 11250 | . . . 4 ⊢ (1 / 2) < 1 | |
18 | 16, 17 | pm3.2i 471 | . . 3 ⊢ (0 ≤ (1 / 2) ∧ (1 / 2) < 1) |
19 | zob 15083 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (((𝑁 + 1) / 2) ∈ ℤ ↔ ((𝑁 − 1) / 2) ∈ ℤ)) | |
20 | 19 | biimpa 501 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((𝑁 − 1) / 2) ∈ ℤ) |
21 | halfre 11246 | . . . 4 ⊢ (1 / 2) ∈ ℝ | |
22 | flbi2 12618 | . . . 4 ⊢ ((((𝑁 − 1) / 2) ∈ ℤ ∧ (1 / 2) ∈ ℝ) → ((⌊‘(((𝑁 − 1) / 2) + (1 / 2))) = ((𝑁 − 1) / 2) ↔ (0 ≤ (1 / 2) ∧ (1 / 2) < 1))) | |
23 | 20, 21, 22 | sylancl 694 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((⌊‘(((𝑁 − 1) / 2) + (1 / 2))) = ((𝑁 − 1) / 2) ↔ (0 ≤ (1 / 2) ∧ (1 / 2) < 1))) |
24 | 18, 23 | mpbiri 248 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (⌊‘(((𝑁 − 1) / 2) + (1 / 2))) = ((𝑁 − 1) / 2)) |
25 | 15, 24 | eqtrd 2656 | 1 ⊢ ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (⌊‘(𝑁 / 2)) = ((𝑁 − 1) / 2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 class class class wbr 4653 ‘cfv 5888 (class class class)co 6650 ℂcc 9934 ℝcr 9935 0cc0 9936 1c1 9937 + caddc 9939 < clt 10074 ≤ cle 10075 − cmin 10266 / cdiv 10684 2c2 11070 ℤcz 11377 ⌊cfl 12591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-n0 11293 df-z 11378 df-uz 11688 df-fl 12593 |
This theorem is referenced by: nn0ofldiv2 42326 dignn0flhalflem2 42410 nn0sumshdiglemB 42414 |
Copyright terms: Public domain | W3C validator |