Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
x86.c
Go to the documentation of this file.
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  * Avi Kivity <[email protected]>
13  * Yaniv Kamay <[email protected]>
14  * Amit Shah <[email protected]>
15  * Ben-Ami Yassour <[email protected]>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2. See
18  * the COPYING file in the top-level directory.
19  *
20  */
21 
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
34 #include <linux/fs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <trace/events/kvm.h>
50 
51 #define CREATE_TRACE_POINTS
52 #include "trace.h"
53 
54 #include <asm/debugreg.h>
55 #include <asm/msr.h>
56 #include <asm/desc.h>
57 #include <asm/mtrr.h>
58 #include <asm/mce.h>
59 #include <asm/i387.h>
60 #include <asm/fpu-internal.h> /* Ugh! */
61 #include <asm/xcr.h>
62 #include <asm/pvclock.h>
63 #include <asm/div64.h>
64 
65 #define MAX_IO_MSRS 256
66 #define KVM_MAX_MCE_BANKS 32
67 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
68 
69 #define emul_to_vcpu(ctxt) \
70  container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
71 
72 /* EFER defaults:
73  * - enable syscall per default because its emulated by KVM
74  * - enable LME and LMA per default on 64 bit KVM
75  */
76 #ifdef CONFIG_X86_64
77 static
78 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
79 #else
80 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
81 #endif
82 
83 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
84 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
85 
86 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
87 static void process_nmi(struct kvm_vcpu *vcpu);
88 
90 EXPORT_SYMBOL_GPL(kvm_x86_ops);
91 
92 static bool ignore_msrs = 0;
93 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
94 
96 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
98 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
99 
100 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
101 static u32 tsc_tolerance_ppm = 250;
102 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
103 
104 #define KVM_NR_SHARED_MSRS 16
105 
107  int nr;
109 };
110 
118 };
119 
120 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
121 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
122 
124  { "pf_fixed", VCPU_STAT(pf_fixed) },
125  { "pf_guest", VCPU_STAT(pf_guest) },
126  { "tlb_flush", VCPU_STAT(tlb_flush) },
127  { "invlpg", VCPU_STAT(invlpg) },
128  { "exits", VCPU_STAT(exits) },
129  { "io_exits", VCPU_STAT(io_exits) },
130  { "mmio_exits", VCPU_STAT(mmio_exits) },
131  { "signal_exits", VCPU_STAT(signal_exits) },
132  { "irq_window", VCPU_STAT(irq_window_exits) },
133  { "nmi_window", VCPU_STAT(nmi_window_exits) },
134  { "halt_exits", VCPU_STAT(halt_exits) },
135  { "halt_wakeup", VCPU_STAT(halt_wakeup) },
136  { "hypercalls", VCPU_STAT(hypercalls) },
137  { "request_irq", VCPU_STAT(request_irq_exits) },
138  { "irq_exits", VCPU_STAT(irq_exits) },
139  { "host_state_reload", VCPU_STAT(host_state_reload) },
140  { "efer_reload", VCPU_STAT(efer_reload) },
141  { "fpu_reload", VCPU_STAT(fpu_reload) },
142  { "insn_emulation", VCPU_STAT(insn_emulation) },
143  { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
144  { "irq_injections", VCPU_STAT(irq_injections) },
145  { "nmi_injections", VCPU_STAT(nmi_injections) },
146  { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
147  { "mmu_pte_write", VM_STAT(mmu_pte_write) },
148  { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
149  { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
150  { "mmu_flooded", VM_STAT(mmu_flooded) },
151  { "mmu_recycled", VM_STAT(mmu_recycled) },
152  { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
153  { "mmu_unsync", VM_STAT(mmu_unsync) },
154  { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
155  { "largepages", VM_STAT(lpages) },
156  { NULL }
157 };
158 
160 
161 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
162 
163 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
164 {
165  int i;
166  for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
167  vcpu->arch.apf.gfns[i] = ~0;
168 }
169 
170 static void kvm_on_user_return(struct user_return_notifier *urn)
171 {
172  unsigned slot;
173  struct kvm_shared_msrs *locals
174  = container_of(urn, struct kvm_shared_msrs, urn);
175  struct kvm_shared_msr_values *values;
176 
177  for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
178  values = &locals->values[slot];
179  if (values->host != values->curr) {
180  wrmsrl(shared_msrs_global.msrs[slot], values->host);
181  values->curr = values->host;
182  }
183  }
184  locals->registered = false;
186 }
187 
188 static void shared_msr_update(unsigned slot, u32 msr)
189 {
190  struct kvm_shared_msrs *smsr;
191  u64 value;
192 
193  smsr = &__get_cpu_var(shared_msrs);
194  /* only read, and nobody should modify it at this time,
195  * so don't need lock */
196  if (slot >= shared_msrs_global.nr) {
197  printk(KERN_ERR "kvm: invalid MSR slot!");
198  return;
199  }
200  rdmsrl_safe(msr, &value);
201  smsr->values[slot].host = value;
202  smsr->values[slot].curr = value;
203 }
204 
205 void kvm_define_shared_msr(unsigned slot, u32 msr)
206 {
207  if (slot >= shared_msrs_global.nr)
208  shared_msrs_global.nr = slot + 1;
209  shared_msrs_global.msrs[slot] = msr;
210  /* we need ensured the shared_msr_global have been updated */
211  smp_wmb();
212 }
214 
215 static void kvm_shared_msr_cpu_online(void)
216 {
217  unsigned i;
218 
219  for (i = 0; i < shared_msrs_global.nr; ++i)
220  shared_msr_update(i, shared_msrs_global.msrs[i]);
221 }
222 
223 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
224 {
225  struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
226 
227  if (((value ^ smsr->values[slot].curr) & mask) == 0)
228  return;
229  smsr->values[slot].curr = value;
230  wrmsrl(shared_msrs_global.msrs[slot], value);
231  if (!smsr->registered) {
232  smsr->urn.on_user_return = kvm_on_user_return;
234  smsr->registered = true;
235  }
236 }
238 
239 static void drop_user_return_notifiers(void *ignore)
240 {
241  struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
242 
243  if (smsr->registered)
244  kvm_on_user_return(&smsr->urn);
245 }
246 
248 {
249  return vcpu->arch.apic_base;
250 }
252 
253 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
254 {
255  /* TODO: reserve bits check */
256  kvm_lapic_set_base(vcpu, data);
257 }
259 
260 #define EXCPT_BENIGN 0
261 #define EXCPT_CONTRIBUTORY 1
262 #define EXCPT_PF 2
263 
264 static int exception_class(int vector)
265 {
266  switch (vector) {
267  case PF_VECTOR:
268  return EXCPT_PF;
269  case DE_VECTOR:
270  case TS_VECTOR:
271  case NP_VECTOR:
272  case SS_VECTOR:
273  case GP_VECTOR:
274  return EXCPT_CONTRIBUTORY;
275  default:
276  break;
277  }
278  return EXCPT_BENIGN;
279 }
280 
281 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
282  unsigned nr, bool has_error, u32 error_code,
283  bool reinject)
284 {
285  u32 prev_nr;
286  int class1, class2;
287 
288  kvm_make_request(KVM_REQ_EVENT, vcpu);
289 
290  if (!vcpu->arch.exception.pending) {
291  queue:
292  vcpu->arch.exception.pending = true;
293  vcpu->arch.exception.has_error_code = has_error;
294  vcpu->arch.exception.nr = nr;
295  vcpu->arch.exception.error_code = error_code;
296  vcpu->arch.exception.reinject = reinject;
297  return;
298  }
299 
300  /* to check exception */
301  prev_nr = vcpu->arch.exception.nr;
302  if (prev_nr == DF_VECTOR) {
303  /* triple fault -> shutdown */
304  kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
305  return;
306  }
307  class1 = exception_class(prev_nr);
308  class2 = exception_class(nr);
309  if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
310  || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
311  /* generate double fault per SDM Table 5-5 */
312  vcpu->arch.exception.pending = true;
313  vcpu->arch.exception.has_error_code = true;
314  vcpu->arch.exception.nr = DF_VECTOR;
315  vcpu->arch.exception.error_code = 0;
316  } else
317  /* replace previous exception with a new one in a hope
318  that instruction re-execution will regenerate lost
319  exception */
320  goto queue;
321 }
322 
323 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
324 {
325  kvm_multiple_exception(vcpu, nr, false, 0, false);
326 }
328 
329 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
330 {
331  kvm_multiple_exception(vcpu, nr, false, 0, true);
332 }
334 
335 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
336 {
337  if (err)
338  kvm_inject_gp(vcpu, 0);
339  else
340  kvm_x86_ops->skip_emulated_instruction(vcpu);
341 }
343 
345 {
346  ++vcpu->stat.pf_guest;
347  vcpu->arch.cr2 = fault->address;
349 }
351 
352 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
353 {
354  if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
355  vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
356  else
357  vcpu->arch.mmu.inject_page_fault(vcpu, fault);
358 }
359 
360 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
361 {
362  atomic_inc(&vcpu->arch.nmi_queued);
363  kvm_make_request(KVM_REQ_NMI, vcpu);
364 }
366 
367 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
368 {
369  kvm_multiple_exception(vcpu, nr, true, error_code, false);
370 }
372 
373 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
374 {
375  kvm_multiple_exception(vcpu, nr, true, error_code, true);
376 }
378 
379 /*
380  * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
381  * a #GP and return false.
382  */
383 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
384 {
385  if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
386  return true;
388  return false;
389 }
391 
392 /*
393  * This function will be used to read from the physical memory of the currently
394  * running guest. The difference to kvm_read_guest_page is that this function
395  * can read from guest physical or from the guest's guest physical memory.
396  */
397 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
398  gfn_t ngfn, void *data, int offset, int len,
399  u32 access)
400 {
401  gfn_t real_gfn;
402  gpa_t ngpa;
403 
404  ngpa = gfn_to_gpa(ngfn);
405  real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
406  if (real_gfn == UNMAPPED_GVA)
407  return -EFAULT;
408 
409  real_gfn = gpa_to_gfn(real_gfn);
410 
411  return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
412 }
414 
416  void *data, int offset, int len, u32 access)
417 {
418  return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
419  data, offset, len, access);
420 }
421 
422 /*
423  * Load the pae pdptrs. Return true is they are all valid.
424  */
425 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
426 {
427  gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
428  unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
429  int i;
430  int ret;
431  u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
432 
433  ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
434  offset * sizeof(u64), sizeof(pdpte),
436  if (ret < 0) {
437  ret = 0;
438  goto out;
439  }
440  for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
441  if (is_present_gpte(pdpte[i]) &&
442  (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
443  ret = 0;
444  goto out;
445  }
446  }
447  ret = 1;
448 
449  memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
451  (unsigned long *)&vcpu->arch.regs_avail);
453  (unsigned long *)&vcpu->arch.regs_dirty);
454 out:
455 
456  return ret;
457 }
459 
460 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
461 {
462  u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
463  bool changed = true;
464  int offset;
465  gfn_t gfn;
466  int r;
467 
468  if (is_long_mode(vcpu) || !is_pae(vcpu))
469  return false;
470 
472  (unsigned long *)&vcpu->arch.regs_avail))
473  return true;
474 
475  gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
476  offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
477  r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
479  if (r < 0)
480  goto out;
481  changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
482 out:
483 
484  return changed;
485 }
486 
487 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
488 {
489  unsigned long old_cr0 = kvm_read_cr0(vcpu);
490  unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
492 
493  cr0 |= X86_CR0_ET;
494 
495 #ifdef CONFIG_X86_64
496  if (cr0 & 0xffffffff00000000UL)
497  return 1;
498 #endif
499 
500  cr0 &= ~CR0_RESERVED_BITS;
501 
502  if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
503  return 1;
504 
505  if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
506  return 1;
507 
508  if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
509 #ifdef CONFIG_X86_64
510  if ((vcpu->arch.efer & EFER_LME)) {
511  int cs_db, cs_l;
512 
513  if (!is_pae(vcpu))
514  return 1;
515  kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
516  if (cs_l)
517  return 1;
518  } else
519 #endif
520  if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
521  kvm_read_cr3(vcpu)))
522  return 1;
523  }
524 
525  if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
526  return 1;
527 
528  kvm_x86_ops->set_cr0(vcpu, cr0);
529 
530  if ((cr0 ^ old_cr0) & X86_CR0_PG) {
532  kvm_async_pf_hash_reset(vcpu);
533  }
534 
535  if ((cr0 ^ old_cr0) & update_bits)
536  kvm_mmu_reset_context(vcpu);
537  return 0;
538 }
540 
541 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
542 {
543  (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
544 }
546 
547 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
548 {
549  u64 xcr0;
550 
551  /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
552  if (index != XCR_XFEATURE_ENABLED_MASK)
553  return 1;
554  xcr0 = xcr;
555  if (kvm_x86_ops->get_cpl(vcpu) != 0)
556  return 1;
557  if (!(xcr0 & XSTATE_FP))
558  return 1;
559  if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
560  return 1;
561  if (xcr0 & ~host_xcr0)
562  return 1;
563  vcpu->arch.xcr0 = xcr0;
564  vcpu->guest_xcr0_loaded = 0;
565  return 0;
566 }
567 
568 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
569 {
570  if (__kvm_set_xcr(vcpu, index, xcr)) {
571  kvm_inject_gp(vcpu, 0);
572  return 1;
573  }
574  return 0;
575 }
577 
578 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
579 {
580  unsigned long old_cr4 = kvm_read_cr4(vcpu);
581  unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
583  if (cr4 & CR4_RESERVED_BITS)
584  return 1;
585 
586  if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
587  return 1;
588 
589  if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
590  return 1;
591 
592  if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS))
593  return 1;
594 
595  if (is_long_mode(vcpu)) {
596  if (!(cr4 & X86_CR4_PAE))
597  return 1;
598  } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
599  && ((cr4 ^ old_cr4) & pdptr_bits)
600  && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
601  kvm_read_cr3(vcpu)))
602  return 1;
603 
604  if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
605  if (!guest_cpuid_has_pcid(vcpu))
606  return 1;
607 
608  /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
609  if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
610  return 1;
611  }
612 
613  if (kvm_x86_ops->set_cr4(vcpu, cr4))
614  return 1;
615 
616  if (((cr4 ^ old_cr4) & pdptr_bits) ||
617  (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
618  kvm_mmu_reset_context(vcpu);
619 
620  if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
621  kvm_update_cpuid(vcpu);
622 
623  return 0;
624 }
626 
627 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
628 {
629  if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
630  kvm_mmu_sync_roots(vcpu);
631  kvm_mmu_flush_tlb(vcpu);
632  return 0;
633  }
634 
635  if (is_long_mode(vcpu)) {
636  if (kvm_read_cr4(vcpu) & X86_CR4_PCIDE) {
638  return 1;
639  } else
640  if (cr3 & CR3_L_MODE_RESERVED_BITS)
641  return 1;
642  } else {
643  if (is_pae(vcpu)) {
644  if (cr3 & CR3_PAE_RESERVED_BITS)
645  return 1;
646  if (is_paging(vcpu) &&
647  !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
648  return 1;
649  }
650  /*
651  * We don't check reserved bits in nonpae mode, because
652  * this isn't enforced, and VMware depends on this.
653  */
654  }
655 
656  /*
657  * Does the new cr3 value map to physical memory? (Note, we
658  * catch an invalid cr3 even in real-mode, because it would
659  * cause trouble later on when we turn on paging anyway.)
660  *
661  * A real CPU would silently accept an invalid cr3 and would
662  * attempt to use it - with largely undefined (and often hard
663  * to debug) behavior on the guest side.
664  */
665  if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
666  return 1;
667  vcpu->arch.cr3 = cr3;
668  __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
669  vcpu->arch.mmu.new_cr3(vcpu);
670  return 0;
671 }
673 
674 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
675 {
676  if (cr8 & CR8_RESERVED_BITS)
677  return 1;
678  if (irqchip_in_kernel(vcpu->kvm))
679  kvm_lapic_set_tpr(vcpu, cr8);
680  else
681  vcpu->arch.cr8 = cr8;
682  return 0;
683 }
685 
686 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
687 {
688  if (irqchip_in_kernel(vcpu->kvm))
689  return kvm_lapic_get_cr8(vcpu);
690  else
691  return vcpu->arch.cr8;
692 }
694 
695 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
696 {
697  unsigned long dr7;
698 
700  dr7 = vcpu->arch.guest_debug_dr7;
701  else
702  dr7 = vcpu->arch.dr7;
703  kvm_x86_ops->set_dr7(vcpu, dr7);
704  vcpu->arch.switch_db_regs = (dr7 & DR7_BP_EN_MASK);
705 }
706 
707 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
708 {
709  switch (dr) {
710  case 0 ... 3:
711  vcpu->arch.db[dr] = val;
712  if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
713  vcpu->arch.eff_db[dr] = val;
714  break;
715  case 4:
716  if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
717  return 1; /* #UD */
718  /* fall through */
719  case 6:
720  if (val & 0xffffffff00000000ULL)
721  return -1; /* #GP */
722  vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
723  break;
724  case 5:
725  if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
726  return 1; /* #UD */
727  /* fall through */
728  default: /* 7 */
729  if (val & 0xffffffff00000000ULL)
730  return -1; /* #GP */
731  vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
732  kvm_update_dr7(vcpu);
733  break;
734  }
735 
736  return 0;
737 }
738 
739 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
740 {
741  int res;
742 
743  res = __kvm_set_dr(vcpu, dr, val);
744  if (res > 0)
746  else if (res < 0)
747  kvm_inject_gp(vcpu, 0);
748 
749  return res;
750 }
752 
753 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
754 {
755  switch (dr) {
756  case 0 ... 3:
757  *val = vcpu->arch.db[dr];
758  break;
759  case 4:
760  if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
761  return 1;
762  /* fall through */
763  case 6:
764  *val = vcpu->arch.dr6;
765  break;
766  case 5:
767  if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
768  return 1;
769  /* fall through */
770  default: /* 7 */
771  *val = vcpu->arch.dr7;
772  break;
773  }
774 
775  return 0;
776 }
777 
778 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
779 {
780  if (_kvm_get_dr(vcpu, dr, val)) {
782  return 1;
783  }
784  return 0;
785 }
787 
788 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
789 {
790  u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
791  u64 data;
792  int err;
793 
794  err = kvm_pmu_read_pmc(vcpu, ecx, &data);
795  if (err)
796  return err;
797  kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
798  kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
799  return err;
800 }
802 
803 /*
804  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
805  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
806  *
807  * This list is modified at module load time to reflect the
808  * capabilities of the host cpu. This capabilities test skips MSRs that are
809  * kvm-specific. Those are put in the beginning of the list.
810  */
811 
812 #define KVM_SAVE_MSRS_BEGIN 10
813 static u32 msrs_to_save[] = {
820  MSR_STAR,
821 #ifdef CONFIG_X86_64
823 #endif
825 };
826 
827 static unsigned num_msrs_to_save;
828 
829 static const u32 emulated_msrs[] = {
834 };
835 
836 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
837 {
838  u64 old_efer = vcpu->arch.efer;
839 
840  if (efer & efer_reserved_bits)
841  return 1;
842 
843  if (is_paging(vcpu)
844  && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
845  return 1;
846 
847  if (efer & EFER_FFXSR) {
848  struct kvm_cpuid_entry2 *feat;
849 
850  feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
851  if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
852  return 1;
853  }
854 
855  if (efer & EFER_SVME) {
856  struct kvm_cpuid_entry2 *feat;
857 
858  feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
859  if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
860  return 1;
861  }
862 
863  efer &= ~EFER_LMA;
864  efer |= vcpu->arch.efer & EFER_LMA;
865 
866  kvm_x86_ops->set_efer(vcpu, efer);
867 
868  vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
869 
870  /* Update reserved bits */
871  if ((efer ^ old_efer) & EFER_NX)
872  kvm_mmu_reset_context(vcpu);
873 
874  return 0;
875 }
876 
878 {
879  efer_reserved_bits &= ~mask;
880 }
882 
883 
884 /*
885  * Writes msr value into into the appropriate "register".
886  * Returns 0 on success, non-0 otherwise.
887  * Assumes vcpu_load() was already called.
888  */
889 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
890 {
891  return kvm_x86_ops->set_msr(vcpu, msr_index, data);
892 }
893 
894 /*
895  * Adapt set_msr() to msr_io()'s calling convention
896  */
897 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
898 {
899  return kvm_set_msr(vcpu, index, *data);
900 }
901 
902 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
903 {
904  int version;
905  int r;
906  struct pvclock_wall_clock wc;
907  struct timespec boot;
908 
909  if (!wall_clock)
910  return;
911 
912  r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
913  if (r)
914  return;
915 
916  if (version & 1)
917  ++version; /* first time write, random junk */
918 
919  ++version;
920 
921  kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
922 
923  /*
924  * The guest calculates current wall clock time by adding
925  * system time (updated by kvm_guest_time_update below) to the
926  * wall clock specified here. guest system time equals host
927  * system time for us, thus we must fill in host boot time here.
928  */
929  getboottime(&boot);
930 
931  if (kvm->arch.kvmclock_offset) {
932  struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
933  boot = timespec_sub(boot, ts);
934  }
935  wc.sec = boot.tv_sec;
936  wc.nsec = boot.tv_nsec;
937  wc.version = version;
938 
939  kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
940 
941  version++;
942  kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
943 }
944 
945 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
946 {
947  uint32_t quotient, remainder;
948 
949  /* Don't try to replace with do_div(), this one calculates
950  * "(dividend << 32) / divisor" */
951  __asm__ ( "divl %4"
952  : "=a" (quotient), "=d" (remainder)
953  : "0" (0), "1" (dividend), "r" (divisor) );
954  return quotient;
955 }
956 
957 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
958  s8 *pshift, u32 *pmultiplier)
959 {
960  uint64_t scaled64;
961  int32_t shift = 0;
962  uint64_t tps64;
963  uint32_t tps32;
964 
965  tps64 = base_khz * 1000LL;
966  scaled64 = scaled_khz * 1000LL;
967  while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
968  tps64 >>= 1;
969  shift--;
970  }
971 
972  tps32 = (uint32_t)tps64;
973  while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
974  if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
975  scaled64 >>= 1;
976  else
977  tps32 <<= 1;
978  shift++;
979  }
980 
981  *pshift = shift;
982  *pmultiplier = div_frac(scaled64, tps32);
983 
984  pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
985  __func__, base_khz, scaled_khz, shift, *pmultiplier);
986 }
987 
988 static inline u64 get_kernel_ns(void)
989 {
990  struct timespec ts;
991 
992  WARN_ON(preemptible());
993  ktime_get_ts(&ts);
995  return timespec_to_ns(&ts);
996 }
997 
998 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
999 unsigned long max_tsc_khz;
1000 
1001 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1002 {
1003  return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1004  vcpu->arch.virtual_tsc_shift);
1005 }
1006 
1007 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1008 {
1009  u64 v = (u64)khz * (1000000 + ppm);
1010  do_div(v, 1000000);
1011  return v;
1012 }
1013 
1014 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1015 {
1016  u32 thresh_lo, thresh_hi;
1017  int use_scaling = 0;
1018 
1019  /* Compute a scale to convert nanoseconds in TSC cycles */
1020  kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1021  &vcpu->arch.virtual_tsc_shift,
1022  &vcpu->arch.virtual_tsc_mult);
1023  vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1024 
1025  /*
1026  * Compute the variation in TSC rate which is acceptable
1027  * within the range of tolerance and decide if the
1028  * rate being applied is within that bounds of the hardware
1029  * rate. If so, no scaling or compensation need be done.
1030  */
1031  thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1032  thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1033  if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1034  pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1035  use_scaling = 1;
1036  }
1037  kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1038 }
1039 
1040 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1041 {
1042  u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1043  vcpu->arch.virtual_tsc_mult,
1044  vcpu->arch.virtual_tsc_shift);
1045  tsc += vcpu->arch.this_tsc_write;
1046  return tsc;
1047 }
1048 
1049 void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
1050 {
1051  struct kvm *kvm = vcpu->kvm;
1052  u64 offset, ns, elapsed;
1053  unsigned long flags;
1054  s64 usdiff;
1055 
1056  raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1057  offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1058  ns = get_kernel_ns();
1059  elapsed = ns - kvm->arch.last_tsc_nsec;
1060 
1061  /* n.b - signed multiplication and division required */
1062  usdiff = data - kvm->arch.last_tsc_write;
1063 #ifdef CONFIG_X86_64
1064  usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1065 #else
1066  /* do_div() only does unsigned */
1067  asm("idivl %2; xor %%edx, %%edx"
1068  : "=A"(usdiff)
1069  : "A"(usdiff * 1000), "rm"(vcpu->arch.virtual_tsc_khz));
1070 #endif
1071  do_div(elapsed, 1000);
1072  usdiff -= elapsed;
1073  if (usdiff < 0)
1074  usdiff = -usdiff;
1075 
1076  /*
1077  * Special case: TSC write with a small delta (1 second) of virtual
1078  * cycle time against real time is interpreted as an attempt to
1079  * synchronize the CPU.
1080  *
1081  * For a reliable TSC, we can match TSC offsets, and for an unstable
1082  * TSC, we add elapsed time in this computation. We could let the
1083  * compensation code attempt to catch up if we fall behind, but
1084  * it's better to try to match offsets from the beginning.
1085  */
1086  if (usdiff < USEC_PER_SEC &&
1087  vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1088  if (!check_tsc_unstable()) {
1089  offset = kvm->arch.cur_tsc_offset;
1090  pr_debug("kvm: matched tsc offset for %llu\n", data);
1091  } else {
1092  u64 delta = nsec_to_cycles(vcpu, elapsed);
1093  data += delta;
1094  offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1095  pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1096  }
1097  } else {
1098  /*
1099  * We split periods of matched TSC writes into generations.
1100  * For each generation, we track the original measured
1101  * nanosecond time, offset, and write, so if TSCs are in
1102  * sync, we can match exact offset, and if not, we can match
1103  * exact software computation in compute_guest_tsc()
1104  *
1105  * These values are tracked in kvm->arch.cur_xxx variables.
1106  */
1107  kvm->arch.cur_tsc_generation++;
1108  kvm->arch.cur_tsc_nsec = ns;
1109  kvm->arch.cur_tsc_write = data;
1110  kvm->arch.cur_tsc_offset = offset;
1111  pr_debug("kvm: new tsc generation %u, clock %llu\n",
1112  kvm->arch.cur_tsc_generation, data);
1113  }
1114 
1115  /*
1116  * We also track th most recent recorded KHZ, write and time to
1117  * allow the matching interval to be extended at each write.
1118  */
1119  kvm->arch.last_tsc_nsec = ns;
1120  kvm->arch.last_tsc_write = data;
1121  kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1122 
1123  /* Reset of TSC must disable overshoot protection below */
1124  vcpu->arch.hv_clock.tsc_timestamp = 0;
1125  vcpu->arch.last_guest_tsc = data;
1126 
1127  /* Keep track of which generation this VCPU has synchronized to */
1128  vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1129  vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1130  vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1131 
1132  kvm_x86_ops->write_tsc_offset(vcpu, offset);
1133  raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1134 }
1135 
1137 
1138 static int kvm_guest_time_update(struct kvm_vcpu *v)
1139 {
1140  unsigned long flags;
1141  struct kvm_vcpu_arch *vcpu = &v->arch;
1142  void *shared_kaddr;
1143  unsigned long this_tsc_khz;
1144  s64 kernel_ns, max_kernel_ns;
1146  u8 pvclock_flags;
1147 
1148  /* Keep irq disabled to prevent changes to the clock */
1149  local_irq_save(flags);
1150  tsc_timestamp = kvm_x86_ops->read_l1_tsc(v);
1151  kernel_ns = get_kernel_ns();
1152  this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1153  if (unlikely(this_tsc_khz == 0)) {
1154  local_irq_restore(flags);
1155  kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1156  return 1;
1157  }
1158 
1159  /*
1160  * We may have to catch up the TSC to match elapsed wall clock
1161  * time for two reasons, even if kvmclock is used.
1162  * 1) CPU could have been running below the maximum TSC rate
1163  * 2) Broken TSC compensation resets the base at each VCPU
1164  * entry to avoid unknown leaps of TSC even when running
1165  * again on the same CPU. This may cause apparent elapsed
1166  * time to disappear, and the guest to stand still or run
1167  * very slowly.
1168  */
1169  if (vcpu->tsc_catchup) {
1170  u64 tsc = compute_guest_tsc(v, kernel_ns);
1171  if (tsc > tsc_timestamp) {
1172  adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1173  tsc_timestamp = tsc;
1174  }
1175  }
1176 
1177  local_irq_restore(flags);
1178 
1179  if (!vcpu->time_page)
1180  return 0;
1181 
1182  /*
1183  * Time as measured by the TSC may go backwards when resetting the base
1184  * tsc_timestamp. The reason for this is that the TSC resolution is
1185  * higher than the resolution of the other clock scales. Thus, many
1186  * possible measurments of the TSC correspond to one measurement of any
1187  * other clock, and so a spread of values is possible. This is not a
1188  * problem for the computation of the nanosecond clock; with TSC rates
1189  * around 1GHZ, there can only be a few cycles which correspond to one
1190  * nanosecond value, and any path through this code will inevitably
1191  * take longer than that. However, with the kernel_ns value itself,
1192  * the precision may be much lower, down to HZ granularity. If the
1193  * first sampling of TSC against kernel_ns ends in the low part of the
1194  * range, and the second in the high end of the range, we can get:
1195  *
1196  * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1197  *
1198  * As the sampling errors potentially range in the thousands of cycles,
1199  * it is possible such a time value has already been observed by the
1200  * guest. To protect against this, we must compute the system time as
1201  * observed by the guest and ensure the new system time is greater.
1202  */
1203  max_kernel_ns = 0;
1204  if (vcpu->hv_clock.tsc_timestamp) {
1205  max_kernel_ns = vcpu->last_guest_tsc -
1206  vcpu->hv_clock.tsc_timestamp;
1207  max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1208  vcpu->hv_clock.tsc_to_system_mul,
1209  vcpu->hv_clock.tsc_shift);
1210  max_kernel_ns += vcpu->last_kernel_ns;
1211  }
1212 
1213  if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1214  kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1215  &vcpu->hv_clock.tsc_shift,
1216  &vcpu->hv_clock.tsc_to_system_mul);
1217  vcpu->hw_tsc_khz = this_tsc_khz;
1218  }
1219 
1220  if (max_kernel_ns > kernel_ns)
1221  kernel_ns = max_kernel_ns;
1222 
1223  /* With all the info we got, fill in the values */
1224  vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1225  vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1226  vcpu->last_kernel_ns = kernel_ns;
1227  vcpu->last_guest_tsc = tsc_timestamp;
1228 
1229  pvclock_flags = 0;
1231  pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1232  vcpu->pvclock_set_guest_stopped_request = false;
1233  }
1234 
1235  vcpu->hv_clock.flags = pvclock_flags;
1236 
1237  /*
1238  * The interface expects us to write an even number signaling that the
1239  * update is finished. Since the guest won't see the intermediate
1240  * state, we just increase by 2 at the end.
1241  */
1242  vcpu->hv_clock.version += 2;
1243 
1244  shared_kaddr = kmap_atomic(vcpu->time_page);
1245 
1246  memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1247  sizeof(vcpu->hv_clock));
1248 
1249  kunmap_atomic(shared_kaddr);
1250 
1251  mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1252  return 0;
1253 }
1254 
1255 static bool msr_mtrr_valid(unsigned msr)
1256 {
1257  switch (msr) {
1258  case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1259  case MSR_MTRRfix64K_00000:
1260  case MSR_MTRRfix16K_80000:
1261  case MSR_MTRRfix16K_A0000:
1262  case MSR_MTRRfix4K_C0000:
1263  case MSR_MTRRfix4K_C8000:
1264  case MSR_MTRRfix4K_D0000:
1265  case MSR_MTRRfix4K_D8000:
1266  case MSR_MTRRfix4K_E0000:
1267  case MSR_MTRRfix4K_E8000:
1268  case MSR_MTRRfix4K_F0000:
1269  case MSR_MTRRfix4K_F8000:
1270  case MSR_MTRRdefType:
1271  case MSR_IA32_CR_PAT:
1272  return true;
1273  case 0x2f8:
1274  return true;
1275  }
1276  return false;
1277 }
1278 
1279 static bool valid_pat_type(unsigned t)
1280 {
1281  return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1282 }
1283 
1284 static bool valid_mtrr_type(unsigned t)
1285 {
1286  return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1287 }
1288 
1289 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1290 {
1291  int i;
1292 
1293  if (!msr_mtrr_valid(msr))
1294  return false;
1295 
1296  if (msr == MSR_IA32_CR_PAT) {
1297  for (i = 0; i < 8; i++)
1298  if (!valid_pat_type((data >> (i * 8)) & 0xff))
1299  return false;
1300  return true;
1301  } else if (msr == MSR_MTRRdefType) {
1302  if (data & ~0xcff)
1303  return false;
1304  return valid_mtrr_type(data & 0xff);
1305  } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1306  for (i = 0; i < 8 ; i++)
1307  if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1308  return false;
1309  return true;
1310  }
1311 
1312  /* variable MTRRs */
1313  return valid_mtrr_type(data & 0xff);
1314 }
1315 
1316 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1317 {
1318  u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1319 
1320  if (!mtrr_valid(vcpu, msr, data))
1321  return 1;
1322 
1323  if (msr == MSR_MTRRdefType) {
1324  vcpu->arch.mtrr_state.def_type = data;
1325  vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1326  } else if (msr == MSR_MTRRfix64K_00000)
1327  p[0] = data;
1328  else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1329  p[1 + msr - MSR_MTRRfix16K_80000] = data;
1330  else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1331  p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1332  else if (msr == MSR_IA32_CR_PAT)
1333  vcpu->arch.pat = data;
1334  else { /* Variable MTRRs */
1335  int idx, is_mtrr_mask;
1336  u64 *pt;
1337 
1338  idx = (msr - 0x200) / 2;
1339  is_mtrr_mask = msr - 0x200 - 2 * idx;
1340  if (!is_mtrr_mask)
1341  pt =
1342  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1343  else
1344  pt =
1345  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1346  *pt = data;
1347  }
1348 
1349  kvm_mmu_reset_context(vcpu);
1350  return 0;
1351 }
1352 
1353 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1354 {
1355  u64 mcg_cap = vcpu->arch.mcg_cap;
1356  unsigned bank_num = mcg_cap & 0xff;
1357 
1358  switch (msr) {
1359  case MSR_IA32_MCG_STATUS:
1360  vcpu->arch.mcg_status = data;
1361  break;
1362  case MSR_IA32_MCG_CTL:
1363  if (!(mcg_cap & MCG_CTL_P))
1364  return 1;
1365  if (data != 0 && data != ~(u64)0)
1366  return -1;
1367  vcpu->arch.mcg_ctl = data;
1368  break;
1369  default:
1370  if (msr >= MSR_IA32_MC0_CTL &&
1371  msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1372  u32 offset = msr - MSR_IA32_MC0_CTL;
1373  /* only 0 or all 1s can be written to IA32_MCi_CTL
1374  * some Linux kernels though clear bit 10 in bank 4 to
1375  * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1376  * this to avoid an uncatched #GP in the guest
1377  */
1378  if ((offset & 0x3) == 0 &&
1379  data != 0 && (data | (1 << 10)) != ~(u64)0)
1380  return -1;
1381  vcpu->arch.mce_banks[offset] = data;
1382  break;
1383  }
1384  return 1;
1385  }
1386  return 0;
1387 }
1388 
1389 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1390 {
1391  struct kvm *kvm = vcpu->kvm;
1392  int lm = is_long_mode(vcpu);
1393  u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1394  : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1395  u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1396  : kvm->arch.xen_hvm_config.blob_size_32;
1397  u32 page_num = data & ~PAGE_MASK;
1398  u64 page_addr = data & PAGE_MASK;
1399  u8 *page;
1400  int r;
1401 
1402  r = -E2BIG;
1403  if (page_num >= blob_size)
1404  goto out;
1405  r = -ENOMEM;
1406  page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1407  if (IS_ERR(page)) {
1408  r = PTR_ERR(page);
1409  goto out;
1410  }
1411  if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1412  goto out_free;
1413  r = 0;
1414 out_free:
1415  kfree(page);
1416 out:
1417  return r;
1418 }
1419 
1420 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1421 {
1422  return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1423 }
1424 
1425 static bool kvm_hv_msr_partition_wide(u32 msr)
1426 {
1427  bool r = false;
1428  switch (msr) {
1430  case HV_X64_MSR_HYPERCALL:
1431  r = true;
1432  break;
1433  }
1434 
1435  return r;
1436 }
1437 
1438 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1439 {
1440  struct kvm *kvm = vcpu->kvm;
1441 
1442  switch (msr) {
1444  kvm->arch.hv_guest_os_id = data;
1445  /* setting guest os id to zero disables hypercall page */
1446  if (!kvm->arch.hv_guest_os_id)
1447  kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1448  break;
1449  case HV_X64_MSR_HYPERCALL: {
1450  u64 gfn;
1451  unsigned long addr;
1452  u8 instructions[4];
1453 
1454  /* if guest os id is not set hypercall should remain disabled */
1455  if (!kvm->arch.hv_guest_os_id)
1456  break;
1457  if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1458  kvm->arch.hv_hypercall = data;
1459  break;
1460  }
1462  addr = gfn_to_hva(kvm, gfn);
1463  if (kvm_is_error_hva(addr))
1464  return 1;
1465  kvm_x86_ops->patch_hypercall(vcpu, instructions);
1466  ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1467  if (__copy_to_user((void __user *)addr, instructions, 4))
1468  return 1;
1469  kvm->arch.hv_hypercall = data;
1470  break;
1471  }
1472  default:
1473  vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1474  "data 0x%llx\n", msr, data);
1475  return 1;
1476  }
1477  return 0;
1478 }
1479 
1480 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1481 {
1482  switch (msr) {
1484  unsigned long addr;
1485 
1486  if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1487  vcpu->arch.hv_vapic = data;
1488  break;
1489  }
1490  addr = gfn_to_hva(vcpu->kvm, data >>
1492  if (kvm_is_error_hva(addr))
1493  return 1;
1494  if (__clear_user((void __user *)addr, PAGE_SIZE))
1495  return 1;
1496  vcpu->arch.hv_vapic = data;
1497  break;
1498  }
1499  case HV_X64_MSR_EOI:
1500  return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1501  case HV_X64_MSR_ICR:
1502  return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1503  case HV_X64_MSR_TPR:
1504  return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1505  default:
1506  vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1507  "data 0x%llx\n", msr, data);
1508  return 1;
1509  }
1510 
1511  return 0;
1512 }
1513 
1514 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1515 {
1516  gpa_t gpa = data & ~0x3f;
1517 
1518  /* Bits 2:5 are reserved, Should be zero */
1519  if (data & 0x3c)
1520  return 1;
1521 
1522  vcpu->arch.apf.msr_val = data;
1523 
1524  if (!(data & KVM_ASYNC_PF_ENABLED)) {
1526  kvm_async_pf_hash_reset(vcpu);
1527  return 0;
1528  }
1529 
1530  if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
1531  return 1;
1532 
1533  vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1535  return 0;
1536 }
1537 
1538 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1539 {
1540  if (vcpu->arch.time_page) {
1541  kvm_release_page_dirty(vcpu->arch.time_page);
1542  vcpu->arch.time_page = NULL;
1543  }
1544 }
1545 
1546 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1547 {
1548  u64 delta;
1549 
1550  if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1551  return;
1552 
1553  delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1554  vcpu->arch.st.last_steal = current->sched_info.run_delay;
1555  vcpu->arch.st.accum_steal = delta;
1556 }
1557 
1558 static void record_steal_time(struct kvm_vcpu *vcpu)
1559 {
1560  if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1561  return;
1562 
1563  if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1564  &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1565  return;
1566 
1567  vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1568  vcpu->arch.st.steal.version += 2;
1569  vcpu->arch.st.accum_steal = 0;
1570 
1571  kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1572  &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1573 }
1574 
1575 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1576 {
1577  bool pr = false;
1578 
1579  switch (msr) {
1580  case MSR_EFER:
1581  return set_efer(vcpu, data);
1582  case MSR_K7_HWCR:
1583  data &= ~(u64)0x40; /* ignore flush filter disable */
1584  data &= ~(u64)0x100; /* ignore ignne emulation enable */
1585  data &= ~(u64)0x8; /* ignore TLB cache disable */
1586  if (data != 0) {
1587  vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1588  data);
1589  return 1;
1590  }
1591  break;
1593  if (data != 0) {
1594  vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1595  "0x%llx\n", data);
1596  return 1;
1597  }
1598  break;
1599  case MSR_AMD64_NB_CFG:
1600  break;
1601  case MSR_IA32_DEBUGCTLMSR:
1602  if (!data) {
1603  /* We support the non-activated case already */
1604  break;
1605  } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1606  /* Values other than LBR and BTF are vendor-specific,
1607  thus reserved and should throw a #GP */
1608  return 1;
1609  }
1610  vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1611  __func__, data);
1612  break;
1613  case MSR_IA32_UCODE_REV:
1614  case MSR_IA32_UCODE_WRITE:
1615  case MSR_VM_HSAVE_PA:
1617  break;
1618  case 0x200 ... 0x2ff:
1619  return set_msr_mtrr(vcpu, msr, data);
1620  case MSR_IA32_APICBASE:
1621  kvm_set_apic_base(vcpu, data);
1622  break;
1623  case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1624  return kvm_x2apic_msr_write(vcpu, msr, data);
1625  case MSR_IA32_TSCDEADLINE:
1626  kvm_set_lapic_tscdeadline_msr(vcpu, data);
1627  break;
1628  case MSR_IA32_MISC_ENABLE:
1629  vcpu->arch.ia32_misc_enable_msr = data;
1630  break;
1632  case MSR_KVM_WALL_CLOCK:
1633  vcpu->kvm->arch.wall_clock = data;
1634  kvm_write_wall_clock(vcpu->kvm, data);
1635  break;
1637  case MSR_KVM_SYSTEM_TIME: {
1638  kvmclock_reset(vcpu);
1639 
1640  vcpu->arch.time = data;
1641  kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1642 
1643  /* we verify if the enable bit is set... */
1644  if (!(data & 1))
1645  break;
1646 
1647  /* ...but clean it before doing the actual write */
1648  vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1649 
1650  vcpu->arch.time_page =
1651  gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1652 
1653  if (is_error_page(vcpu->arch.time_page))
1654  vcpu->arch.time_page = NULL;
1655 
1656  break;
1657  }
1658  case MSR_KVM_ASYNC_PF_EN:
1659  if (kvm_pv_enable_async_pf(vcpu, data))
1660  return 1;
1661  break;
1662  case MSR_KVM_STEAL_TIME:
1663 
1664  if (unlikely(!sched_info_on()))
1665  return 1;
1666 
1667  if (data & KVM_STEAL_RESERVED_MASK)
1668  return 1;
1669 
1670  if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
1671  data & KVM_STEAL_VALID_BITS))
1672  return 1;
1673 
1674  vcpu->arch.st.msr_val = data;
1675 
1676  if (!(data & KVM_MSR_ENABLED))
1677  break;
1678 
1679  vcpu->arch.st.last_steal = current->sched_info.run_delay;
1680 
1681  preempt_disable();
1682  accumulate_steal_time(vcpu);
1683  preempt_enable();
1684 
1685  kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
1686 
1687  break;
1688  case MSR_KVM_PV_EOI_EN:
1689  if (kvm_lapic_enable_pv_eoi(vcpu, data))
1690  return 1;
1691  break;
1692 
1693  case MSR_IA32_MCG_CTL:
1694  case MSR_IA32_MCG_STATUS:
1695  case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1696  return set_msr_mce(vcpu, msr, data);
1697 
1698  /* Performance counters are not protected by a CPUID bit,
1699  * so we should check all of them in the generic path for the sake of
1700  * cross vendor migration.
1701  * Writing a zero into the event select MSRs disables them,
1702  * which we perfectly emulate ;-). Any other value should be at least
1703  * reported, some guests depend on them.
1704  */
1705  case MSR_K7_EVNTSEL0:
1706  case MSR_K7_EVNTSEL1:
1707  case MSR_K7_EVNTSEL2:
1708  case MSR_K7_EVNTSEL3:
1709  if (data != 0)
1710  vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1711  "0x%x data 0x%llx\n", msr, data);
1712  break;
1713  /* at least RHEL 4 unconditionally writes to the perfctr registers,
1714  * so we ignore writes to make it happy.
1715  */
1716  case MSR_K7_PERFCTR0:
1717  case MSR_K7_PERFCTR1:
1718  case MSR_K7_PERFCTR2:
1719  case MSR_K7_PERFCTR3:
1720  vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1721  "0x%x data 0x%llx\n", msr, data);
1722  break;
1723  case MSR_P6_PERFCTR0:
1724  case MSR_P6_PERFCTR1:
1725  pr = true;
1726  case MSR_P6_EVNTSEL0:
1727  case MSR_P6_EVNTSEL1:
1728  if (kvm_pmu_msr(vcpu, msr))
1729  return kvm_pmu_set_msr(vcpu, msr, data);
1730 
1731  if (pr || data != 0)
1732  vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
1733  "0x%x data 0x%llx\n", msr, data);
1734  break;
1735  case MSR_K7_CLK_CTL:
1736  /*
1737  * Ignore all writes to this no longer documented MSR.
1738  * Writes are only relevant for old K7 processors,
1739  * all pre-dating SVM, but a recommended workaround from
1740  * AMD for these chips. It is possible to specify the
1741  * affected processor models on the command line, hence
1742  * the need to ignore the workaround.
1743  */
1744  break;
1746  if (kvm_hv_msr_partition_wide(msr)) {
1747  int r;
1748  mutex_lock(&vcpu->kvm->lock);
1749  r = set_msr_hyperv_pw(vcpu, msr, data);
1750  mutex_unlock(&vcpu->kvm->lock);
1751  return r;
1752  } else
1753  return set_msr_hyperv(vcpu, msr, data);
1754  break;
1755  case MSR_IA32_BBL_CR_CTL3:
1756  /* Drop writes to this legacy MSR -- see rdmsr
1757  * counterpart for further detail.
1758  */
1759  vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
1760  break;
1762  if (!guest_cpuid_has_osvw(vcpu))
1763  return 1;
1764  vcpu->arch.osvw.length = data;
1765  break;
1766  case MSR_AMD64_OSVW_STATUS:
1767  if (!guest_cpuid_has_osvw(vcpu))
1768  return 1;
1769  vcpu->arch.osvw.status = data;
1770  break;
1771  default:
1772  if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1773  return xen_hvm_config(vcpu, data);
1774  if (kvm_pmu_msr(vcpu, msr))
1775  return kvm_pmu_set_msr(vcpu, msr, data);
1776  if (!ignore_msrs) {
1777  vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1778  msr, data);
1779  return 1;
1780  } else {
1781  vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1782  msr, data);
1783  break;
1784  }
1785  }
1786  return 0;
1787 }
1789 
1790 
1791 /*
1792  * Reads an msr value (of 'msr_index') into 'pdata'.
1793  * Returns 0 on success, non-0 otherwise.
1794  * Assumes vcpu_load() was already called.
1795  */
1796 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1797 {
1798  return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1799 }
1800 
1801 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1802 {
1803  u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1804 
1805  if (!msr_mtrr_valid(msr))
1806  return 1;
1807 
1808  if (msr == MSR_MTRRdefType)
1809  *pdata = vcpu->arch.mtrr_state.def_type +
1810  (vcpu->arch.mtrr_state.enabled << 10);
1811  else if (msr == MSR_MTRRfix64K_00000)
1812  *pdata = p[0];
1813  else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1814  *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1815  else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1816  *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1817  else if (msr == MSR_IA32_CR_PAT)
1818  *pdata = vcpu->arch.pat;
1819  else { /* Variable MTRRs */
1820  int idx, is_mtrr_mask;
1821  u64 *pt;
1822 
1823  idx = (msr - 0x200) / 2;
1824  is_mtrr_mask = msr - 0x200 - 2 * idx;
1825  if (!is_mtrr_mask)
1826  pt =
1827  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1828  else
1829  pt =
1830  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1831  *pdata = *pt;
1832  }
1833 
1834  return 0;
1835 }
1836 
1837 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1838 {
1839  u64 data;
1840  u64 mcg_cap = vcpu->arch.mcg_cap;
1841  unsigned bank_num = mcg_cap & 0xff;
1842 
1843  switch (msr) {
1844  case MSR_IA32_P5_MC_ADDR:
1845  case MSR_IA32_P5_MC_TYPE:
1846  data = 0;
1847  break;
1848  case MSR_IA32_MCG_CAP:
1849  data = vcpu->arch.mcg_cap;
1850  break;
1851  case MSR_IA32_MCG_CTL:
1852  if (!(mcg_cap & MCG_CTL_P))
1853  return 1;
1854  data = vcpu->arch.mcg_ctl;
1855  break;
1856  case MSR_IA32_MCG_STATUS:
1857  data = vcpu->arch.mcg_status;
1858  break;
1859  default:
1860  if (msr >= MSR_IA32_MC0_CTL &&
1861  msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1862  u32 offset = msr - MSR_IA32_MC0_CTL;
1863  data = vcpu->arch.mce_banks[offset];
1864  break;
1865  }
1866  return 1;
1867  }
1868  *pdata = data;
1869  return 0;
1870 }
1871 
1872 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1873 {
1874  u64 data = 0;
1875  struct kvm *kvm = vcpu->kvm;
1876 
1877  switch (msr) {
1879  data = kvm->arch.hv_guest_os_id;
1880  break;
1881  case HV_X64_MSR_HYPERCALL:
1882  data = kvm->arch.hv_hypercall;
1883  break;
1884  default:
1885  vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1886  return 1;
1887  }
1888 
1889  *pdata = data;
1890  return 0;
1891 }
1892 
1893 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1894 {
1895  u64 data = 0;
1896 
1897  switch (msr) {
1898  case HV_X64_MSR_VP_INDEX: {
1899  int r;
1900  struct kvm_vcpu *v;
1901  kvm_for_each_vcpu(r, v, vcpu->kvm)
1902  if (v == vcpu)
1903  data = r;
1904  break;
1905  }
1906  case HV_X64_MSR_EOI:
1907  return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1908  case HV_X64_MSR_ICR:
1909  return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1910  case HV_X64_MSR_TPR:
1913  data = vcpu->arch.hv_vapic;
1914  break;
1915  default:
1916  vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1917  return 1;
1918  }
1919  *pdata = data;
1920  return 0;
1921 }
1922 
1923 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1924 {
1925  u64 data;
1926 
1927  switch (msr) {
1928  case MSR_IA32_PLATFORM_ID:
1930  case MSR_IA32_DEBUGCTLMSR:
1934  case MSR_IA32_LASTINTTOIP:
1935  case MSR_K8_SYSCFG:
1936  case MSR_K7_HWCR:
1937  case MSR_VM_HSAVE_PA:
1938  case MSR_K7_EVNTSEL0:
1939  case MSR_K7_PERFCTR0:
1941  case MSR_AMD64_NB_CFG:
1943  data = 0;
1944  break;
1945  case MSR_P6_PERFCTR0:
1946  case MSR_P6_PERFCTR1:
1947  case MSR_P6_EVNTSEL0:
1948  case MSR_P6_EVNTSEL1:
1949  if (kvm_pmu_msr(vcpu, msr))
1950  return kvm_pmu_get_msr(vcpu, msr, pdata);
1951  data = 0;
1952  break;
1953  case MSR_IA32_UCODE_REV:
1954  data = 0x100000000ULL;
1955  break;
1956  case MSR_MTRRcap:
1957  data = 0x500 | KVM_NR_VAR_MTRR;
1958  break;
1959  case 0x200 ... 0x2ff:
1960  return get_msr_mtrr(vcpu, msr, pdata);
1961  case 0xcd: /* fsb frequency */
1962  data = 3;
1963  break;
1964  /*
1965  * MSR_EBC_FREQUENCY_ID
1966  * Conservative value valid for even the basic CPU models.
1967  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
1968  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
1969  * and 266MHz for model 3, or 4. Set Core Clock
1970  * Frequency to System Bus Frequency Ratio to 1 (bits
1971  * 31:24) even though these are only valid for CPU
1972  * models > 2, however guests may end up dividing or
1973  * multiplying by zero otherwise.
1974  */
1975  case MSR_EBC_FREQUENCY_ID:
1976  data = 1 << 24;
1977  break;
1978  case MSR_IA32_APICBASE:
1979  data = kvm_get_apic_base(vcpu);
1980  break;
1981  case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1982  return kvm_x2apic_msr_read(vcpu, msr, pdata);
1983  break;
1984  case MSR_IA32_TSCDEADLINE:
1985  data = kvm_get_lapic_tscdeadline_msr(vcpu);
1986  break;
1987  case MSR_IA32_MISC_ENABLE:
1988  data = vcpu->arch.ia32_misc_enable_msr;
1989  break;
1990  case MSR_IA32_PERF_STATUS:
1991  /* TSC increment by tick */
1992  data = 1000ULL;
1993  /* CPU multiplier */
1994  data |= (((uint64_t)4ULL) << 40);
1995  break;
1996  case MSR_EFER:
1997  data = vcpu->arch.efer;
1998  break;
1999  case MSR_KVM_WALL_CLOCK:
2001  data = vcpu->kvm->arch.wall_clock;
2002  break;
2003  case MSR_KVM_SYSTEM_TIME:
2005  data = vcpu->arch.time;
2006  break;
2007  case MSR_KVM_ASYNC_PF_EN:
2008  data = vcpu->arch.apf.msr_val;
2009  break;
2010  case MSR_KVM_STEAL_TIME:
2011  data = vcpu->arch.st.msr_val;
2012  break;
2013  case MSR_KVM_PV_EOI_EN:
2014  data = vcpu->arch.pv_eoi.msr_val;
2015  break;
2016  case MSR_IA32_P5_MC_ADDR:
2017  case MSR_IA32_P5_MC_TYPE:
2018  case MSR_IA32_MCG_CAP:
2019  case MSR_IA32_MCG_CTL:
2020  case MSR_IA32_MCG_STATUS:
2021  case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2022  return get_msr_mce(vcpu, msr, pdata);
2023  case MSR_K7_CLK_CTL:
2024  /*
2025  * Provide expected ramp-up count for K7. All other
2026  * are set to zero, indicating minimum divisors for
2027  * every field.
2028  *
2029  * This prevents guest kernels on AMD host with CPU
2030  * type 6, model 8 and higher from exploding due to
2031  * the rdmsr failing.
2032  */
2033  data = 0x20000000;
2034  break;
2036  if (kvm_hv_msr_partition_wide(msr)) {
2037  int r;
2038  mutex_lock(&vcpu->kvm->lock);
2039  r = get_msr_hyperv_pw(vcpu, msr, pdata);
2040  mutex_unlock(&vcpu->kvm->lock);
2041  return r;
2042  } else
2043  return get_msr_hyperv(vcpu, msr, pdata);
2044  break;
2045  case MSR_IA32_BBL_CR_CTL3:
2046  /* This legacy MSR exists but isn't fully documented in current
2047  * silicon. It is however accessed by winxp in very narrow
2048  * scenarios where it sets bit #19, itself documented as
2049  * a "reserved" bit. Best effort attempt to source coherent
2050  * read data here should the balance of the register be
2051  * interpreted by the guest:
2052  *
2053  * L2 cache control register 3: 64GB range, 256KB size,
2054  * enabled, latency 0x1, configured
2055  */
2056  data = 0xbe702111;
2057  break;
2059  if (!guest_cpuid_has_osvw(vcpu))
2060  return 1;
2061  data = vcpu->arch.osvw.length;
2062  break;
2063  case MSR_AMD64_OSVW_STATUS:
2064  if (!guest_cpuid_has_osvw(vcpu))
2065  return 1;
2066  data = vcpu->arch.osvw.status;
2067  break;
2068  default:
2069  if (kvm_pmu_msr(vcpu, msr))
2070  return kvm_pmu_get_msr(vcpu, msr, pdata);
2071  if (!ignore_msrs) {
2072  vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2073  return 1;
2074  } else {
2075  vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2076  data = 0;
2077  }
2078  break;
2079  }
2080  *pdata = data;
2081  return 0;
2082 }
2084 
2085 /*
2086  * Read or write a bunch of msrs. All parameters are kernel addresses.
2087  *
2088  * @return number of msrs set successfully.
2089  */
2090 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2091  struct kvm_msr_entry *entries,
2092  int (*do_msr)(struct kvm_vcpu *vcpu,
2093  unsigned index, u64 *data))
2094 {
2095  int i, idx;
2096 
2097  idx = srcu_read_lock(&vcpu->kvm->srcu);
2098  for (i = 0; i < msrs->nmsrs; ++i)
2099  if (do_msr(vcpu, entries[i].index, &entries[i].data))
2100  break;
2101  srcu_read_unlock(&vcpu->kvm->srcu, idx);
2102 
2103  return i;
2104 }
2105 
2106 /*
2107  * Read or write a bunch of msrs. Parameters are user addresses.
2108  *
2109  * @return number of msrs set successfully.
2110  */
2111 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2112  int (*do_msr)(struct kvm_vcpu *vcpu,
2113  unsigned index, u64 *data),
2114  int writeback)
2115 {
2116  struct kvm_msrs msrs;
2117  struct kvm_msr_entry *entries;
2118  int r, n;
2119  unsigned size;
2120 
2121  r = -EFAULT;
2122  if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2123  goto out;
2124 
2125  r = -E2BIG;
2126  if (msrs.nmsrs >= MAX_IO_MSRS)
2127  goto out;
2128 
2129  size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2130  entries = memdup_user(user_msrs->entries, size);
2131  if (IS_ERR(entries)) {
2132  r = PTR_ERR(entries);
2133  goto out;
2134  }
2135 
2136  r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2137  if (r < 0)
2138  goto out_free;
2139 
2140  r = -EFAULT;
2141  if (writeback && copy_to_user(user_msrs->entries, entries, size))
2142  goto out_free;
2143 
2144  r = n;
2145 
2146 out_free:
2147  kfree(entries);
2148 out:
2149  return r;
2150 }
2151 
2153 {
2154  int r;
2155 
2156  switch (ext) {
2157  case KVM_CAP_IRQCHIP:
2158  case KVM_CAP_HLT:
2160  case KVM_CAP_SET_TSS_ADDR:
2161  case KVM_CAP_EXT_CPUID:
2162  case KVM_CAP_CLOCKSOURCE:
2163  case KVM_CAP_PIT:
2164  case KVM_CAP_NOP_IO_DELAY:
2165  case KVM_CAP_MP_STATE:
2166  case KVM_CAP_SYNC_MMU:
2167  case KVM_CAP_USER_NMI:
2168  case KVM_CAP_REINJECT_CONTROL:
2171  case KVM_CAP_IRQFD:
2172  case KVM_CAP_IOEVENTFD:
2173  case KVM_CAP_PIT2:
2174  case KVM_CAP_PIT_STATE2:
2176  case KVM_CAP_XEN_HVM:
2177  case KVM_CAP_ADJUST_CLOCK:
2178  case KVM_CAP_VCPU_EVENTS:
2179  case KVM_CAP_HYPERV:
2180  case KVM_CAP_HYPERV_VAPIC:
2181  case KVM_CAP_HYPERV_SPIN:
2182  case KVM_CAP_PCI_SEGMENT:
2183  case KVM_CAP_DEBUGREGS:
2185  case KVM_CAP_XSAVE:
2186  case KVM_CAP_ASYNC_PF:
2187  case KVM_CAP_GET_TSC_KHZ:
2188  case KVM_CAP_PCI_2_3:
2189  case KVM_CAP_KVMCLOCK_CTRL:
2190  case KVM_CAP_READONLY_MEM:
2192  r = 1;
2193  break;
2196  break;
2197  case KVM_CAP_VAPIC:
2198  r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2199  break;
2200  case KVM_CAP_NR_VCPUS:
2201  r = KVM_SOFT_MAX_VCPUS;
2202  break;
2203  case KVM_CAP_MAX_VCPUS:
2204  r = KVM_MAX_VCPUS;
2205  break;
2206  case KVM_CAP_NR_MEMSLOTS:
2207  r = KVM_MEMORY_SLOTS;
2208  break;
2209  case KVM_CAP_PV_MMU: /* obsolete */
2210  r = 0;
2211  break;
2212  case KVM_CAP_IOMMU:
2214  break;
2215  case KVM_CAP_MCE:
2216  r = KVM_MAX_MCE_BANKS;
2217  break;
2218  case KVM_CAP_XCRS:
2219  r = cpu_has_xsave;
2220  break;
2221  case KVM_CAP_TSC_CONTROL:
2222  r = kvm_has_tsc_control;
2223  break;
2225  r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2226  break;
2227  default:
2228  r = 0;
2229  break;
2230  }
2231  return r;
2232 
2233 }
2234 
2235 long kvm_arch_dev_ioctl(struct file *filp,
2236  unsigned int ioctl, unsigned long arg)
2237 {
2238  void __user *argp = (void __user *)arg;
2239  long r;
2240 
2241  switch (ioctl) {
2242  case KVM_GET_MSR_INDEX_LIST: {
2243  struct kvm_msr_list __user *user_msr_list = argp;
2244  struct kvm_msr_list msr_list;
2245  unsigned n;
2246 
2247  r = -EFAULT;
2248  if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2249  goto out;
2250  n = msr_list.nmsrs;
2251  msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2252  if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2253  goto out;
2254  r = -E2BIG;
2255  if (n < msr_list.nmsrs)
2256  goto out;
2257  r = -EFAULT;
2258  if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2259  num_msrs_to_save * sizeof(u32)))
2260  goto out;
2261  if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2262  &emulated_msrs,
2263  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2264  goto out;
2265  r = 0;
2266  break;
2267  }
2268  case KVM_GET_SUPPORTED_CPUID: {
2269  struct kvm_cpuid2 __user *cpuid_arg = argp;
2270  struct kvm_cpuid2 cpuid;
2271 
2272  r = -EFAULT;
2273  if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2274  goto out;
2276  cpuid_arg->entries);
2277  if (r)
2278  goto out;
2279 
2280  r = -EFAULT;
2281  if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2282  goto out;
2283  r = 0;
2284  break;
2285  }
2287  u64 mce_cap;
2288 
2289  mce_cap = KVM_MCE_CAP_SUPPORTED;
2290  r = -EFAULT;
2291  if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2292  goto out;
2293  r = 0;
2294  break;
2295  }
2296  default:
2297  r = -EINVAL;
2298  }
2299 out:
2300  return r;
2301 }
2302 
2303 static void wbinvd_ipi(void *garbage)
2304 {
2305  wbinvd();
2306 }
2307 
2308 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2309 {
2310  return vcpu->kvm->arch.iommu_domain &&
2311  !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2312 }
2313 
2314 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2315 {
2316  /* Address WBINVD may be executed by guest */
2317  if (need_emulate_wbinvd(vcpu)) {
2318  if (kvm_x86_ops->has_wbinvd_exit())
2319  cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2320  else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2322  wbinvd_ipi, NULL, 1);
2323  }
2324 
2325  kvm_x86_ops->vcpu_load(vcpu, cpu);
2326 
2327  /* Apply any externally detected TSC adjustments (due to suspend) */
2328  if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2329  adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2330  vcpu->arch.tsc_offset_adjustment = 0;
2332  }
2333 
2334  if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2335  s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2336  native_read_tsc() - vcpu->arch.last_host_tsc;
2337  if (tsc_delta < 0)
2338  mark_tsc_unstable("KVM discovered backwards TSC");
2339  if (check_tsc_unstable()) {
2340  u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2341  vcpu->arch.last_guest_tsc);
2342  kvm_x86_ops->write_tsc_offset(vcpu, offset);
2343  vcpu->arch.tsc_catchup = 1;
2344  }
2345  kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2346  if (vcpu->cpu != cpu)
2347  kvm_migrate_timers(vcpu);
2348  vcpu->cpu = cpu;
2349  }
2350 
2351  accumulate_steal_time(vcpu);
2352  kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2353 }
2354 
2355 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2356 {
2357  kvm_x86_ops->vcpu_put(vcpu);
2358  kvm_put_guest_fpu(vcpu);
2359  vcpu->arch.last_host_tsc = native_read_tsc();
2360 }
2361 
2362 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2363  struct kvm_lapic_state *s)
2364 {
2365  memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2366 
2367  return 0;
2368 }
2369 
2370 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2371  struct kvm_lapic_state *s)
2372 {
2373  kvm_apic_post_state_restore(vcpu, s);
2374  update_cr8_intercept(vcpu);
2375 
2376  return 0;
2377 }
2378 
2379 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2380  struct kvm_interrupt *irq)
2381 {
2382  if (irq->irq < 0 || irq->irq >= KVM_NR_INTERRUPTS)
2383  return -EINVAL;
2384  if (irqchip_in_kernel(vcpu->kvm))
2385  return -ENXIO;
2386 
2387  kvm_queue_interrupt(vcpu, irq->irq, false);
2388  kvm_make_request(KVM_REQ_EVENT, vcpu);
2389 
2390  return 0;
2391 }
2392 
2393 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2394 {
2395  kvm_inject_nmi(vcpu);
2396 
2397  return 0;
2398 }
2399 
2400 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2401  struct kvm_tpr_access_ctl *tac)
2402 {
2403  if (tac->flags)
2404  return -EINVAL;
2405  vcpu->arch.tpr_access_reporting = !!tac->enabled;
2406  return 0;
2407 }
2408 
2409 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2410  u64 mcg_cap)
2411 {
2412  int r;
2413  unsigned bank_num = mcg_cap & 0xff, bank;
2414 
2415  r = -EINVAL;
2416  if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2417  goto out;
2418  if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2419  goto out;
2420  r = 0;
2421  vcpu->arch.mcg_cap = mcg_cap;
2422  /* Init IA32_MCG_CTL to all 1s */
2423  if (mcg_cap & MCG_CTL_P)
2424  vcpu->arch.mcg_ctl = ~(u64)0;
2425  /* Init IA32_MCi_CTL to all 1s */
2426  for (bank = 0; bank < bank_num; bank++)
2427  vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2428 out:
2429  return r;
2430 }
2431 
2432 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2433  struct kvm_x86_mce *mce)
2434 {
2435  u64 mcg_cap = vcpu->arch.mcg_cap;
2436  unsigned bank_num = mcg_cap & 0xff;
2437  u64 *banks = vcpu->arch.mce_banks;
2438 
2439  if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2440  return -EINVAL;
2441  /*
2442  * if IA32_MCG_CTL is not all 1s, the uncorrected error
2443  * reporting is disabled
2444  */
2445  if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2446  vcpu->arch.mcg_ctl != ~(u64)0)
2447  return 0;
2448  banks += 4 * mce->bank;
2449  /*
2450  * if IA32_MCi_CTL is not all 1s, the uncorrected error
2451  * reporting is disabled for the bank
2452  */
2453  if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2454  return 0;
2455  if (mce->status & MCI_STATUS_UC) {
2456  if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2457  !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2458  kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2459  return 0;
2460  }
2461  if (banks[1] & MCI_STATUS_VAL)
2462  mce->status |= MCI_STATUS_OVER;
2463  banks[2] = mce->addr;
2464  banks[3] = mce->misc;
2465  vcpu->arch.mcg_status = mce->mcg_status;
2466  banks[1] = mce->status;
2468  } else if (!(banks[1] & MCI_STATUS_VAL)
2469  || !(banks[1] & MCI_STATUS_UC)) {
2470  if (banks[1] & MCI_STATUS_VAL)
2471  mce->status |= MCI_STATUS_OVER;
2472  banks[2] = mce->addr;
2473  banks[3] = mce->misc;
2474  banks[1] = mce->status;
2475  } else
2476  banks[1] |= MCI_STATUS_OVER;
2477  return 0;
2478 }
2479 
2480 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2481  struct kvm_vcpu_events *events)
2482 {
2483  process_nmi(vcpu);
2484  events->exception.injected =
2485  vcpu->arch.exception.pending &&
2486  !kvm_exception_is_soft(vcpu->arch.exception.nr);
2487  events->exception.nr = vcpu->arch.exception.nr;
2488  events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2489  events->exception.pad = 0;
2490  events->exception.error_code = vcpu->arch.exception.error_code;
2491 
2492  events->interrupt.injected =
2493  vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2494  events->interrupt.nr = vcpu->arch.interrupt.nr;
2495  events->interrupt.soft = 0;
2496  events->interrupt.shadow =
2497  kvm_x86_ops->get_interrupt_shadow(vcpu,
2499 
2500  events->nmi.injected = vcpu->arch.nmi_injected;
2501  events->nmi.pending = vcpu->arch.nmi_pending != 0;
2502  events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2503  events->nmi.pad = 0;
2504 
2505  events->sipi_vector = vcpu->arch.sipi_vector;
2506 
2510  memset(&events->reserved, 0, sizeof(events->reserved));
2511 }
2512 
2513 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2514  struct kvm_vcpu_events *events)
2515 {
2516  if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2519  return -EINVAL;
2520 
2521  process_nmi(vcpu);
2522  vcpu->arch.exception.pending = events->exception.injected;
2523  vcpu->arch.exception.nr = events->exception.nr;
2524  vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2525  vcpu->arch.exception.error_code = events->exception.error_code;
2526 
2527  vcpu->arch.interrupt.pending = events->interrupt.injected;
2528  vcpu->arch.interrupt.nr = events->interrupt.nr;
2529  vcpu->arch.interrupt.soft = events->interrupt.soft;
2530  if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2531  kvm_x86_ops->set_interrupt_shadow(vcpu,
2532  events->interrupt.shadow);
2533 
2534  vcpu->arch.nmi_injected = events->nmi.injected;
2535  if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2536  vcpu->arch.nmi_pending = events->nmi.pending;
2537  kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2538 
2539  if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2540  vcpu->arch.sipi_vector = events->sipi_vector;
2541 
2542  kvm_make_request(KVM_REQ_EVENT, vcpu);
2543 
2544  return 0;
2545 }
2546 
2547 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2548  struct kvm_debugregs *dbgregs)
2549 {
2550  memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2551  dbgregs->dr6 = vcpu->arch.dr6;
2552  dbgregs->dr7 = vcpu->arch.dr7;
2553  dbgregs->flags = 0;
2554  memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2555 }
2556 
2557 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2558  struct kvm_debugregs *dbgregs)
2559 {
2560  if (dbgregs->flags)
2561  return -EINVAL;
2562 
2563  memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2564  vcpu->arch.dr6 = dbgregs->dr6;
2565  vcpu->arch.dr7 = dbgregs->dr7;
2566 
2567  return 0;
2568 }
2569 
2570 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2571  struct kvm_xsave *guest_xsave)
2572 {
2573  if (cpu_has_xsave)
2574  memcpy(guest_xsave->region,
2575  &vcpu->arch.guest_fpu.state->xsave,
2576  xstate_size);
2577  else {
2578  memcpy(guest_xsave->region,
2579  &vcpu->arch.guest_fpu.state->fxsave,
2580  sizeof(struct i387_fxsave_struct));
2581  *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2582  XSTATE_FPSSE;
2583  }
2584 }
2585 
2586 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2587  struct kvm_xsave *guest_xsave)
2588 {
2589  u64 xstate_bv =
2590  *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2591 
2592  if (cpu_has_xsave)
2593  memcpy(&vcpu->arch.guest_fpu.state->xsave,
2594  guest_xsave->region, xstate_size);
2595  else {
2596  if (xstate_bv & ~XSTATE_FPSSE)
2597  return -EINVAL;
2598  memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2599  guest_xsave->region, sizeof(struct i387_fxsave_struct));
2600  }
2601  return 0;
2602 }
2603 
2604 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2605  struct kvm_xcrs *guest_xcrs)
2606 {
2607  if (!cpu_has_xsave) {
2608  guest_xcrs->nr_xcrs = 0;
2609  return;
2610  }
2611 
2612  guest_xcrs->nr_xcrs = 1;
2613  guest_xcrs->flags = 0;
2614  guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2615  guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2616 }
2617 
2618 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2619  struct kvm_xcrs *guest_xcrs)
2620 {
2621  int i, r = 0;
2622 
2623  if (!cpu_has_xsave)
2624  return -EINVAL;
2625 
2626  if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2627  return -EINVAL;
2628 
2629  for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2630  /* Only support XCR0 currently */
2631  if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2633  guest_xcrs->xcrs[0].value);
2634  break;
2635  }
2636  if (r)
2637  r = -EINVAL;
2638  return r;
2639 }
2640 
2641 /*
2642  * kvm_set_guest_paused() indicates to the guest kernel that it has been
2643  * stopped by the hypervisor. This function will be called from the host only.
2644  * EINVAL is returned when the host attempts to set the flag for a guest that
2645  * does not support pv clocks.
2646  */
2647 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
2648 {
2649  if (!vcpu->arch.time_page)
2650  return -EINVAL;
2651  vcpu->arch.pvclock_set_guest_stopped_request = true;
2652  kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2653  return 0;
2654 }
2655 
2656 long kvm_arch_vcpu_ioctl(struct file *filp,
2657  unsigned int ioctl, unsigned long arg)
2658 {
2659  struct kvm_vcpu *vcpu = filp->private_data;
2660  void __user *argp = (void __user *)arg;
2661  int r;
2662  union {
2663  struct kvm_lapic_state *lapic;
2664  struct kvm_xsave *xsave;
2665  struct kvm_xcrs *xcrs;
2666  void *buffer;
2667  } u;
2668 
2669  u.buffer = NULL;
2670  switch (ioctl) {
2671  case KVM_GET_LAPIC: {
2672  r = -EINVAL;
2673  if (!vcpu->arch.apic)
2674  goto out;
2675  u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2676 
2677  r = -ENOMEM;
2678  if (!u.lapic)
2679  goto out;
2680  r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
2681  if (r)
2682  goto out;
2683  r = -EFAULT;
2684  if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
2685  goto out;
2686  r = 0;
2687  break;
2688  }
2689  case KVM_SET_LAPIC: {
2690  r = -EINVAL;
2691  if (!vcpu->arch.apic)
2692  goto out;
2693  u.lapic = memdup_user(argp, sizeof(*u.lapic));
2694  if (IS_ERR(u.lapic)) {
2695  r = PTR_ERR(u.lapic);
2696  goto out;
2697  }
2698 
2699  r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
2700  if (r)
2701  goto out;
2702  r = 0;
2703  break;
2704  }
2705  case KVM_INTERRUPT: {
2706  struct kvm_interrupt irq;
2707 
2708  r = -EFAULT;
2709  if (copy_from_user(&irq, argp, sizeof irq))
2710  goto out;
2711  r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2712  if (r)
2713  goto out;
2714  r = 0;
2715  break;
2716  }
2717  case KVM_NMI: {
2718  r = kvm_vcpu_ioctl_nmi(vcpu);
2719  if (r)
2720  goto out;
2721  r = 0;
2722  break;
2723  }
2724  case KVM_SET_CPUID: {
2725  struct kvm_cpuid __user *cpuid_arg = argp;
2726  struct kvm_cpuid cpuid;
2727 
2728  r = -EFAULT;
2729  if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2730  goto out;
2731  r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2732  if (r)
2733  goto out;
2734  break;
2735  }
2736  case KVM_SET_CPUID2: {
2737  struct kvm_cpuid2 __user *cpuid_arg = argp;
2738  struct kvm_cpuid2 cpuid;
2739 
2740  r = -EFAULT;
2741  if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2742  goto out;
2743  r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2744  cpuid_arg->entries);
2745  if (r)
2746  goto out;
2747  break;
2748  }
2749  case KVM_GET_CPUID2: {
2750  struct kvm_cpuid2 __user *cpuid_arg = argp;
2751  struct kvm_cpuid2 cpuid;
2752 
2753  r = -EFAULT;
2754  if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2755  goto out;
2756  r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2757  cpuid_arg->entries);
2758  if (r)
2759  goto out;
2760  r = -EFAULT;
2761  if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2762  goto out;
2763  r = 0;
2764  break;
2765  }
2766  case KVM_GET_MSRS:
2767  r = msr_io(vcpu, argp, kvm_get_msr, 1);
2768  break;
2769  case KVM_SET_MSRS:
2770  r = msr_io(vcpu, argp, do_set_msr, 0);
2771  break;
2772  case KVM_TPR_ACCESS_REPORTING: {
2773  struct kvm_tpr_access_ctl tac;
2774 
2775  r = -EFAULT;
2776  if (copy_from_user(&tac, argp, sizeof tac))
2777  goto out;
2778  r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2779  if (r)
2780  goto out;
2781  r = -EFAULT;
2782  if (copy_to_user(argp, &tac, sizeof tac))
2783  goto out;
2784  r = 0;
2785  break;
2786  };
2787  case KVM_SET_VAPIC_ADDR: {
2788  struct kvm_vapic_addr va;
2789 
2790  r = -EINVAL;
2791  if (!irqchip_in_kernel(vcpu->kvm))
2792  goto out;
2793  r = -EFAULT;
2794  if (copy_from_user(&va, argp, sizeof va))
2795  goto out;
2796  r = 0;
2798  break;
2799  }
2800  case KVM_X86_SETUP_MCE: {
2801  u64 mcg_cap;
2802 
2803  r = -EFAULT;
2804  if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2805  goto out;
2806  r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2807  break;
2808  }
2809  case KVM_X86_SET_MCE: {
2810  struct kvm_x86_mce mce;
2811 
2812  r = -EFAULT;
2813  if (copy_from_user(&mce, argp, sizeof mce))
2814  goto out;
2815  r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2816  break;
2817  }
2818  case KVM_GET_VCPU_EVENTS: {
2819  struct kvm_vcpu_events events;
2820 
2821  kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2822 
2823  r = -EFAULT;
2824  if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2825  break;
2826  r = 0;
2827  break;
2828  }
2829  case KVM_SET_VCPU_EVENTS: {
2830  struct kvm_vcpu_events events;
2831 
2832  r = -EFAULT;
2833  if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2834  break;
2835 
2836  r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2837  break;
2838  }
2839  case KVM_GET_DEBUGREGS: {
2840  struct kvm_debugregs dbgregs;
2841 
2842  kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
2843 
2844  r = -EFAULT;
2845  if (copy_to_user(argp, &dbgregs,
2846  sizeof(struct kvm_debugregs)))
2847  break;
2848  r = 0;
2849  break;
2850  }
2851  case KVM_SET_DEBUGREGS: {
2852  struct kvm_debugregs dbgregs;
2853 
2854  r = -EFAULT;
2855  if (copy_from_user(&dbgregs, argp,
2856  sizeof(struct kvm_debugregs)))
2857  break;
2858 
2859  r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
2860  break;
2861  }
2862  case KVM_GET_XSAVE: {
2863  u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2864  r = -ENOMEM;
2865  if (!u.xsave)
2866  break;
2867 
2868  kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
2869 
2870  r = -EFAULT;
2871  if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
2872  break;
2873  r = 0;
2874  break;
2875  }
2876  case KVM_SET_XSAVE: {
2877  u.xsave = memdup_user(argp, sizeof(*u.xsave));
2878  if (IS_ERR(u.xsave)) {
2879  r = PTR_ERR(u.xsave);
2880  goto out;
2881  }
2882 
2883  r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
2884  break;
2885  }
2886  case KVM_GET_XCRS: {
2887  u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
2888  r = -ENOMEM;
2889  if (!u.xcrs)
2890  break;
2891 
2892  kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
2893 
2894  r = -EFAULT;
2895  if (copy_to_user(argp, u.xcrs,
2896  sizeof(struct kvm_xcrs)))
2897  break;
2898  r = 0;
2899  break;
2900  }
2901  case KVM_SET_XCRS: {
2902  u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
2903  if (IS_ERR(u.xcrs)) {
2904  r = PTR_ERR(u.xcrs);
2905  goto out;
2906  }
2907 
2908  r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
2909  break;
2910  }
2911  case KVM_SET_TSC_KHZ: {
2912  u32 user_tsc_khz;
2913 
2914  r = -EINVAL;
2915  user_tsc_khz = (u32)arg;
2916 
2917  if (user_tsc_khz >= kvm_max_guest_tsc_khz)
2918  goto out;
2919 
2920  if (user_tsc_khz == 0)
2921  user_tsc_khz = tsc_khz;
2922 
2923  kvm_set_tsc_khz(vcpu, user_tsc_khz);
2924 
2925  r = 0;
2926  goto out;
2927  }
2928  case KVM_GET_TSC_KHZ: {
2929  r = vcpu->arch.virtual_tsc_khz;
2930  goto out;
2931  }
2932  case KVM_KVMCLOCK_CTRL: {
2933  r = kvm_set_guest_paused(vcpu);
2934  goto out;
2935  }
2936  default:
2937  r = -EINVAL;
2938  }
2939 out:
2940  kfree(u.buffer);
2941  return r;
2942 }
2943 
2944 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
2945 {
2946  return VM_FAULT_SIGBUS;
2947 }
2948 
2949 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
2950 {
2951  int ret;
2952 
2953  if (addr > (unsigned int)(-3 * PAGE_SIZE))
2954  return -1;
2955  ret = kvm_x86_ops->set_tss_addr(kvm, addr);
2956  return ret;
2957 }
2958 
2959 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
2960  u64 ident_addr)
2961 {
2962  kvm->arch.ept_identity_map_addr = ident_addr;
2963  return 0;
2964 }
2965 
2966 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
2967  u32 kvm_nr_mmu_pages)
2968 {
2969  if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
2970  return -EINVAL;
2971 
2972  mutex_lock(&kvm->slots_lock);
2973  spin_lock(&kvm->mmu_lock);
2974 
2975  kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
2976  kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
2977 
2978  spin_unlock(&kvm->mmu_lock);
2979  mutex_unlock(&kvm->slots_lock);
2980  return 0;
2981 }
2982 
2983 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
2984 {
2985  return kvm->arch.n_max_mmu_pages;
2986 }
2987 
2988 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2989 {
2990  int r;
2991 
2992  r = 0;
2993  switch (chip->chip_id) {
2995  memcpy(&chip->chip.pic,
2996  &pic_irqchip(kvm)->pics[0],
2997  sizeof(struct kvm_pic_state));
2998  break;
2999  case KVM_IRQCHIP_PIC_SLAVE:
3000  memcpy(&chip->chip.pic,
3001  &pic_irqchip(kvm)->pics[1],
3002  sizeof(struct kvm_pic_state));
3003  break;
3004  case KVM_IRQCHIP_IOAPIC:
3005  r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3006  break;
3007  default:
3008  r = -EINVAL;
3009  break;
3010  }
3011  return r;
3012 }
3013 
3014 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3015 {
3016  int r;
3017 
3018  r = 0;
3019  switch (chip->chip_id) {
3021  spin_lock(&pic_irqchip(kvm)->lock);
3022  memcpy(&pic_irqchip(kvm)->pics[0],
3023  &chip->chip.pic,
3024  sizeof(struct kvm_pic_state));
3025  spin_unlock(&pic_irqchip(kvm)->lock);
3026  break;
3027  case KVM_IRQCHIP_PIC_SLAVE:
3028  spin_lock(&pic_irqchip(kvm)->lock);
3029  memcpy(&pic_irqchip(kvm)->pics[1],
3030  &chip->chip.pic,
3031  sizeof(struct kvm_pic_state));
3032  spin_unlock(&pic_irqchip(kvm)->lock);
3033  break;
3034  case KVM_IRQCHIP_IOAPIC:
3035  r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3036  break;
3037  default:
3038  r = -EINVAL;
3039  break;
3040  }
3041  kvm_pic_update_irq(pic_irqchip(kvm));
3042  return r;
3043 }
3044 
3045 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3046 {
3047  int r = 0;
3048 
3049  mutex_lock(&kvm->arch.vpit->pit_state.lock);
3050  memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3051  mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3052  return r;
3053 }
3054 
3055 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3056 {
3057  int r = 0;
3058 
3059  mutex_lock(&kvm->arch.vpit->pit_state.lock);
3060  memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3061  kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3062  mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3063  return r;
3064 }
3065 
3066 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3067 {
3068  int r = 0;
3069 
3070  mutex_lock(&kvm->arch.vpit->pit_state.lock);
3071  memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3072  sizeof(ps->channels));
3073  ps->flags = kvm->arch.vpit->pit_state.flags;
3074  mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3075  memset(&ps->reserved, 0, sizeof(ps->reserved));
3076  return r;
3077 }
3078 
3079 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3080 {
3081  int r = 0, start = 0;
3082  u32 prev_legacy, cur_legacy;
3083  mutex_lock(&kvm->arch.vpit->pit_state.lock);
3084  prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3085  cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3086  if (!prev_legacy && cur_legacy)
3087  start = 1;
3088  memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3089  sizeof(kvm->arch.vpit->pit_state.channels));
3090  kvm->arch.vpit->pit_state.flags = ps->flags;
3091  kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3092  mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3093  return r;
3094 }
3095 
3096 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3097  struct kvm_reinject_control *control)
3098 {
3099  if (!kvm->arch.vpit)
3100  return -ENXIO;
3101  mutex_lock(&kvm->arch.vpit->pit_state.lock);
3102  kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3103  mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3104  return 0;
3105 }
3106 
3126 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3127 {
3128  int r;
3129  struct kvm_memory_slot *memslot;
3130  unsigned long n, i;
3131  unsigned long *dirty_bitmap;
3132  unsigned long *dirty_bitmap_buffer;
3133  bool is_dirty = false;
3134 
3135  mutex_lock(&kvm->slots_lock);
3136 
3137  r = -EINVAL;
3138  if (log->slot >= KVM_MEMORY_SLOTS)
3139  goto out;
3140 
3141  memslot = id_to_memslot(kvm->memslots, log->slot);
3142 
3143  dirty_bitmap = memslot->dirty_bitmap;
3144  r = -ENOENT;
3145  if (!dirty_bitmap)
3146  goto out;
3147 
3148  n = kvm_dirty_bitmap_bytes(memslot);
3149 
3150  dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
3151  memset(dirty_bitmap_buffer, 0, n);
3152 
3153  spin_lock(&kvm->mmu_lock);
3154 
3155  for (i = 0; i < n / sizeof(long); i++) {
3156  unsigned long mask;
3157  gfn_t offset;
3158 
3159  if (!dirty_bitmap[i])
3160  continue;
3161 
3162  is_dirty = true;
3163 
3164  mask = xchg(&dirty_bitmap[i], 0);
3165  dirty_bitmap_buffer[i] = mask;
3166 
3167  offset = i * BITS_PER_LONG;
3168  kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
3169  }
3170  if (is_dirty)
3171  kvm_flush_remote_tlbs(kvm);
3172 
3173  spin_unlock(&kvm->mmu_lock);
3174 
3175  r = -EFAULT;
3176  if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
3177  goto out;
3178 
3179  r = 0;
3180 out:
3181  mutex_unlock(&kvm->slots_lock);
3182  return r;
3183 }
3184 
3185 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event)
3186 {
3187  if (!irqchip_in_kernel(kvm))
3188  return -ENXIO;
3189 
3191  irq_event->irq, irq_event->level);
3192  return 0;
3193 }
3194 
3195 long kvm_arch_vm_ioctl(struct file *filp,
3196  unsigned int ioctl, unsigned long arg)
3197 {
3198  struct kvm *kvm = filp->private_data;
3199  void __user *argp = (void __user *)arg;
3200  int r = -ENOTTY;
3201  /*
3202  * This union makes it completely explicit to gcc-3.x
3203  * that these two variables' stack usage should be
3204  * combined, not added together.
3205  */
3206  union {
3207  struct kvm_pit_state ps;
3208  struct kvm_pit_state2 ps2;
3209  struct kvm_pit_config pit_config;
3210  } u;
3211 
3212  switch (ioctl) {
3213  case KVM_SET_TSS_ADDR:
3214  r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3215  if (r < 0)
3216  goto out;
3217  break;
3219  u64 ident_addr;
3220 
3221  r = -EFAULT;
3222  if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3223  goto out;
3224  r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3225  if (r < 0)
3226  goto out;
3227  break;
3228  }
3229  case KVM_SET_NR_MMU_PAGES:
3230  r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3231  if (r)
3232  goto out;
3233  break;
3234  case KVM_GET_NR_MMU_PAGES:
3235  r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3236  break;
3237  case KVM_CREATE_IRQCHIP: {
3238  struct kvm_pic *vpic;
3239 
3240  mutex_lock(&kvm->lock);
3241  r = -EEXIST;
3242  if (kvm->arch.vpic)
3243  goto create_irqchip_unlock;
3244  r = -EINVAL;
3245  if (atomic_read(&kvm->online_vcpus))
3246  goto create_irqchip_unlock;
3247  r = -ENOMEM;
3248  vpic = kvm_create_pic(kvm);
3249  if (vpic) {
3250  r = kvm_ioapic_init(kvm);
3251  if (r) {
3252  mutex_lock(&kvm->slots_lock);
3254  &vpic->dev_master);
3256  &vpic->dev_slave);
3258  &vpic->dev_eclr);
3259  mutex_unlock(&kvm->slots_lock);
3260  kfree(vpic);
3261  goto create_irqchip_unlock;
3262  }
3263  } else
3264  goto create_irqchip_unlock;
3265  smp_wmb();
3266  kvm->arch.vpic = vpic;
3267  smp_wmb();
3269  if (r) {
3270  mutex_lock(&kvm->slots_lock);
3271  mutex_lock(&kvm->irq_lock);
3272  kvm_ioapic_destroy(kvm);
3273  kvm_destroy_pic(kvm);
3274  mutex_unlock(&kvm->irq_lock);
3275  mutex_unlock(&kvm->slots_lock);
3276  }
3277  create_irqchip_unlock:
3278  mutex_unlock(&kvm->lock);
3279  break;
3280  }
3281  case KVM_CREATE_PIT:
3282  u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3283  goto create_pit;
3284  case KVM_CREATE_PIT2:
3285  r = -EFAULT;
3286  if (copy_from_user(&u.pit_config, argp,
3287  sizeof(struct kvm_pit_config)))
3288  goto out;
3289  create_pit:
3290  mutex_lock(&kvm->slots_lock);
3291  r = -EEXIST;
3292  if (kvm->arch.vpit)
3293  goto create_pit_unlock;
3294  r = -ENOMEM;
3295  kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3296  if (kvm->arch.vpit)
3297  r = 0;
3298  create_pit_unlock:
3299  mutex_unlock(&kvm->slots_lock);
3300  break;
3301  case KVM_GET_IRQCHIP: {
3302  /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3303  struct kvm_irqchip *chip;
3304 
3305  chip = memdup_user(argp, sizeof(*chip));
3306  if (IS_ERR(chip)) {
3307  r = PTR_ERR(chip);
3308  goto out;
3309  }
3310 
3311  r = -ENXIO;
3312  if (!irqchip_in_kernel(kvm))
3313  goto get_irqchip_out;
3314  r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3315  if (r)
3316  goto get_irqchip_out;
3317  r = -EFAULT;
3318  if (copy_to_user(argp, chip, sizeof *chip))
3319  goto get_irqchip_out;
3320  r = 0;
3321  get_irqchip_out:
3322  kfree(chip);
3323  if (r)
3324  goto out;
3325  break;
3326  }
3327  case KVM_SET_IRQCHIP: {
3328  /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3329  struct kvm_irqchip *chip;
3330 
3331  chip = memdup_user(argp, sizeof(*chip));
3332  if (IS_ERR(chip)) {
3333  r = PTR_ERR(chip);
3334  goto out;
3335  }
3336 
3337  r = -ENXIO;
3338  if (!irqchip_in_kernel(kvm))
3339  goto set_irqchip_out;
3340  r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3341  if (r)
3342  goto set_irqchip_out;
3343  r = 0;
3344  set_irqchip_out:
3345  kfree(chip);
3346  if (r)
3347  goto out;
3348  break;
3349  }
3350  case KVM_GET_PIT: {
3351  r = -EFAULT;
3352  if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3353  goto out;
3354  r = -ENXIO;
3355  if (!kvm->arch.vpit)
3356  goto out;
3357  r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3358  if (r)
3359  goto out;
3360  r = -EFAULT;
3361  if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3362  goto out;
3363  r = 0;
3364  break;
3365  }
3366  case KVM_SET_PIT: {
3367  r = -EFAULT;
3368  if (copy_from_user(&u.ps, argp, sizeof u.ps))
3369  goto out;
3370  r = -ENXIO;
3371  if (!kvm->arch.vpit)
3372  goto out;
3373  r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3374  if (r)
3375  goto out;
3376  r = 0;
3377  break;
3378  }
3379  case KVM_GET_PIT2: {
3380  r = -ENXIO;
3381  if (!kvm->arch.vpit)
3382  goto out;
3383  r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3384  if (r)
3385  goto out;
3386  r = -EFAULT;
3387  if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3388  goto out;
3389  r = 0;
3390  break;
3391  }
3392  case KVM_SET_PIT2: {
3393  r = -EFAULT;
3394  if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3395  goto out;
3396  r = -ENXIO;
3397  if (!kvm->arch.vpit)
3398  goto out;
3399  r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3400  if (r)
3401  goto out;
3402  r = 0;
3403  break;
3404  }
3405  case KVM_REINJECT_CONTROL: {
3406  struct kvm_reinject_control control;
3407  r = -EFAULT;
3408  if (copy_from_user(&control, argp, sizeof(control)))
3409  goto out;
3410  r = kvm_vm_ioctl_reinject(kvm, &control);
3411  if (r)
3412  goto out;
3413  r = 0;
3414  break;
3415  }
3416  case KVM_XEN_HVM_CONFIG: {
3417  r = -EFAULT;
3418  if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3419  sizeof(struct kvm_xen_hvm_config)))
3420  goto out;
3421  r = -EINVAL;
3422  if (kvm->arch.xen_hvm_config.flags)
3423  goto out;
3424  r = 0;
3425  break;
3426  }
3427  case KVM_SET_CLOCK: {
3428  struct kvm_clock_data user_ns;
3429  u64 now_ns;
3430  s64 delta;
3431 
3432  r = -EFAULT;
3433  if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3434  goto out;
3435 
3436  r = -EINVAL;
3437  if (user_ns.flags)
3438  goto out;
3439 
3440  r = 0;
3442  now_ns = get_kernel_ns();
3443  delta = user_ns.clock - now_ns;
3444  local_irq_enable();
3445  kvm->arch.kvmclock_offset = delta;
3446  break;
3447  }
3448  case KVM_GET_CLOCK: {
3449  struct kvm_clock_data user_ns;
3450  u64 now_ns;
3451 
3453  now_ns = get_kernel_ns();
3454  user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3455  local_irq_enable();
3456  user_ns.flags = 0;
3457  memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3458 
3459  r = -EFAULT;
3460  if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3461  goto out;
3462  r = 0;
3463  break;
3464  }
3465 
3466  default:
3467  ;
3468  }
3469 out:
3470  return r;
3471 }
3472 
3473 static void kvm_init_msr_list(void)
3474 {
3475  u32 dummy[2];
3476  unsigned i, j;
3477 
3478  /* skip the first msrs in the list. KVM-specific */
3479  for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3480  if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3481  continue;
3482  if (j < i)
3483  msrs_to_save[j] = msrs_to_save[i];
3484  j++;
3485  }
3486  num_msrs_to_save = j;
3487 }
3488 
3489 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3490  const void *v)
3491 {
3492  int handled = 0;
3493  int n;
3494 
3495  do {
3496  n = min(len, 8);
3497  if (!(vcpu->arch.apic &&
3498  !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3499  && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3500  break;
3501  handled += n;
3502  addr += n;
3503  len -= n;
3504  v += n;
3505  } while (len);
3506 
3507  return handled;
3508 }
3509 
3510 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3511 {
3512  int handled = 0;
3513  int n;
3514 
3515  do {
3516  n = min(len, 8);
3517  if (!(vcpu->arch.apic &&
3518  !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3519  && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3520  break;
3521  trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3522  handled += n;
3523  addr += n;
3524  len -= n;
3525  v += n;
3526  } while (len);
3527 
3528  return handled;
3529 }
3530 
3531 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3532  struct kvm_segment *var, int seg)
3533 {
3534  kvm_x86_ops->set_segment(vcpu, var, seg);
3535 }
3536 
3537 void kvm_get_segment(struct kvm_vcpu *vcpu,
3538  struct kvm_segment *var, int seg)
3539 {
3540  kvm_x86_ops->get_segment(vcpu, var, seg);
3541 }
3542 
3544 {
3545  gpa_t t_gpa;
3546  struct x86_exception exception;
3547 
3548  BUG_ON(!mmu_is_nested(vcpu));
3549 
3550  /* NPT walks are always user-walks */
3551  access |= PFERR_USER_MASK;
3552  t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3553 
3554  return t_gpa;
3555 }
3556 
3558  struct x86_exception *exception)
3559 {
3560  u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3561  return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3562 }
3563 
3565  struct x86_exception *exception)
3566 {
3567  u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3568  access |= PFERR_FETCH_MASK;
3569  return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3570 }
3571 
3573  struct x86_exception *exception)
3574 {
3575  u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3576  access |= PFERR_WRITE_MASK;
3577  return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3578 }
3579 
3580 /* uses this to access any guest's mapped memory without checking CPL */
3582  struct x86_exception *exception)
3583 {
3584  return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3585 }
3586 
3587 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3588  struct kvm_vcpu *vcpu, u32 access,
3589  struct x86_exception *exception)
3590 {
3591  void *data = val;
3592  int r = X86EMUL_CONTINUE;
3593 
3594  while (bytes) {
3595  gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3596  exception);
3597  unsigned offset = addr & (PAGE_SIZE-1);
3598  unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3599  int ret;
3600 
3601  if (gpa == UNMAPPED_GVA)
3602  return X86EMUL_PROPAGATE_FAULT;
3603  ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3604  if (ret < 0) {
3605  r = X86EMUL_IO_NEEDED;
3606  goto out;
3607  }
3608 
3609  bytes -= toread;
3610  data += toread;
3611  addr += toread;
3612  }
3613 out:
3614  return r;
3615 }
3616 
3617 /* used for instruction fetching */
3618 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
3619  gva_t addr, void *val, unsigned int bytes,
3620  struct x86_exception *exception)
3621 {
3622  struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3623  u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3624 
3625  return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3626  access | PFERR_FETCH_MASK,
3627  exception);
3628 }
3629 
3631  gva_t addr, void *val, unsigned int bytes,
3632  struct x86_exception *exception)
3633 {
3634  struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3635  u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3636 
3637  return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3638  exception);
3639 }
3641 
3642 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3643  gva_t addr, void *val, unsigned int bytes,
3644  struct x86_exception *exception)
3645 {
3646  struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3647  return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
3648 }
3649 
3651  gva_t addr, void *val,
3652  unsigned int bytes,
3653  struct x86_exception *exception)
3654 {
3655  struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3656  void *data = val;
3657  int r = X86EMUL_CONTINUE;
3658 
3659  while (bytes) {
3660  gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3662  exception);
3663  unsigned offset = addr & (PAGE_SIZE-1);
3664  unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3665  int ret;
3666 
3667  if (gpa == UNMAPPED_GVA)
3668  return X86EMUL_PROPAGATE_FAULT;
3669  ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3670  if (ret < 0) {
3671  r = X86EMUL_IO_NEEDED;
3672  goto out;
3673  }
3674 
3675  bytes -= towrite;
3676  data += towrite;
3677  addr += towrite;
3678  }
3679 out:
3680  return r;
3681 }
3683 
3684 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
3685  gpa_t *gpa, struct x86_exception *exception,
3686  bool write)
3687 {
3688  u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
3689  | (write ? PFERR_WRITE_MASK : 0);
3690 
3691  if (vcpu_match_mmio_gva(vcpu, gva)
3692  && !permission_fault(vcpu->arch.walk_mmu, vcpu->arch.access, access)) {
3693  *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
3694  (gva & (PAGE_SIZE - 1));
3695  trace_vcpu_match_mmio(gva, *gpa, write, false);
3696  return 1;
3697  }
3698 
3699  *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3700 
3701  if (*gpa == UNMAPPED_GVA)
3702  return -1;
3703 
3704  /* For APIC access vmexit */
3705  if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3706  return 1;
3707 
3708  if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
3709  trace_vcpu_match_mmio(gva, *gpa, write, true);
3710  return 1;
3711  }
3712 
3713  return 0;
3714 }
3715 
3716 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3717  const void *val, int bytes)
3718 {
3719  int ret;
3720 
3721  ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3722  if (ret < 0)
3723  return 0;
3724  kvm_mmu_pte_write(vcpu, gpa, val, bytes);
3725  return 1;
3726 }
3727 
3729  int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
3730  int bytes);
3731  int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
3732  void *val, int bytes);
3733  int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
3734  int bytes, void *val);
3735  int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
3736  void *val, int bytes);
3737  bool write;
3738 };
3739 
3740 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
3741 {
3742  if (vcpu->mmio_read_completed) {
3743  trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3744  vcpu->mmio_fragments[0].gpa, *(u64 *)val);
3745  vcpu->mmio_read_completed = 0;
3746  return 1;
3747  }
3748 
3749  return 0;
3750 }
3751 
3752 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
3753  void *val, int bytes)
3754 {
3755  return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
3756 }
3757 
3758 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
3759  void *val, int bytes)
3760 {
3761  return emulator_write_phys(vcpu, gpa, val, bytes);
3762 }
3763 
3764 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
3765 {
3766  trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3767  return vcpu_mmio_write(vcpu, gpa, bytes, val);
3768 }
3769 
3770 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
3771  void *val, int bytes)
3772 {
3773  trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3774  return X86EMUL_IO_NEEDED;
3775 }
3776 
3777 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
3778  void *val, int bytes)
3779 {
3780  struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
3781 
3782  memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
3783  return X86EMUL_CONTINUE;
3784 }
3785 
3786 static const struct read_write_emulator_ops read_emultor = {
3787  .read_write_prepare = read_prepare,
3788  .read_write_emulate = read_emulate,
3789  .read_write_mmio = vcpu_mmio_read,
3790  .read_write_exit_mmio = read_exit_mmio,
3791 };
3792 
3793 static const struct read_write_emulator_ops write_emultor = {
3794  .read_write_emulate = write_emulate,
3795  .read_write_mmio = write_mmio,
3796  .read_write_exit_mmio = write_exit_mmio,
3797  .write = true,
3798 };
3799 
3800 static int emulator_read_write_onepage(unsigned long addr, void *val,
3801  unsigned int bytes,
3802  struct x86_exception *exception,
3803  struct kvm_vcpu *vcpu,
3804  const struct read_write_emulator_ops *ops)
3805 {
3806  gpa_t gpa;
3807  int handled, ret;
3808  bool write = ops->write;
3809  struct kvm_mmio_fragment *frag;
3810 
3811  ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
3812 
3813  if (ret < 0)
3814  return X86EMUL_PROPAGATE_FAULT;
3815 
3816  /* For APIC access vmexit */
3817  if (ret)
3818  goto mmio;
3819 
3820  if (ops->read_write_emulate(vcpu, gpa, val, bytes))
3821  return X86EMUL_CONTINUE;
3822 
3823 mmio:
3824  /*
3825  * Is this MMIO handled locally?
3826  */
3827  handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
3828  if (handled == bytes)
3829  return X86EMUL_CONTINUE;
3830 
3831  gpa += handled;
3832  bytes -= handled;
3833  val += handled;
3834 
3835  WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
3836  frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
3837  frag->gpa = gpa;
3838  frag->data = val;
3839  frag->len = bytes;
3840  return X86EMUL_CONTINUE;
3841 }
3842 
3843 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
3844  void *val, unsigned int bytes,
3845  struct x86_exception *exception,
3846  const struct read_write_emulator_ops *ops)
3847 {
3848  struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3849  gpa_t gpa;
3850  int rc;
3851 
3852  if (ops->read_write_prepare &&
3853  ops->read_write_prepare(vcpu, val, bytes))
3854  return X86EMUL_CONTINUE;
3855 
3856  vcpu->mmio_nr_fragments = 0;
3857 
3858  /* Crossing a page boundary? */
3859  if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3860  int now;
3861 
3862  now = -addr & ~PAGE_MASK;
3863  rc = emulator_read_write_onepage(addr, val, now, exception,
3864  vcpu, ops);
3865 
3866  if (rc != X86EMUL_CONTINUE)
3867  return rc;
3868  addr += now;
3869  val += now;
3870  bytes -= now;
3871  }
3872 
3873  rc = emulator_read_write_onepage(addr, val, bytes, exception,
3874  vcpu, ops);
3875  if (rc != X86EMUL_CONTINUE)
3876  return rc;
3877 
3878  if (!vcpu->mmio_nr_fragments)
3879  return rc;
3880 
3881  gpa = vcpu->mmio_fragments[0].gpa;
3882 
3883  vcpu->mmio_needed = 1;
3884  vcpu->mmio_cur_fragment = 0;
3885 
3886  vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
3887  vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
3888  vcpu->run->exit_reason = KVM_EXIT_MMIO;
3889  vcpu->run->mmio.phys_addr = gpa;
3890 
3891  return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
3892 }
3893 
3894 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
3895  unsigned long addr,
3896  void *val,
3897  unsigned int bytes,
3898  struct x86_exception *exception)
3899 {
3900  return emulator_read_write(ctxt, addr, val, bytes,
3901  exception, &read_emultor);
3902 }
3903 
3905  unsigned long addr,
3906  const void *val,
3907  unsigned int bytes,
3908  struct x86_exception *exception)
3909 {
3910  return emulator_read_write(ctxt, addr, (void *)val, bytes,
3911  exception, &write_emultor);
3912 }
3913 
3914 #define CMPXCHG_TYPE(t, ptr, old, new) \
3915  (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
3916 
3917 #ifdef CONFIG_X86_64
3918 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
3919 #else
3920 # define CMPXCHG64(ptr, old, new) \
3921  (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
3922 #endif
3923 
3924 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
3925  unsigned long addr,
3926  const void *old,
3927  const void *new,
3928  unsigned int bytes,
3929  struct x86_exception *exception)
3930 {
3931  struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3932  gpa_t gpa;
3933  struct page *page;
3934  char *kaddr;
3935  bool exchanged;
3936 
3937  /* guests cmpxchg8b have to be emulated atomically */
3938  if (bytes > 8 || (bytes & (bytes - 1)))
3939  goto emul_write;
3940 
3941  gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
3942 
3943  if (gpa == UNMAPPED_GVA ||
3944  (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3945  goto emul_write;
3946 
3947  if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3948  goto emul_write;
3949 
3950  page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3951  if (is_error_page(page))
3952  goto emul_write;
3953 
3954  kaddr = kmap_atomic(page);
3955  kaddr += offset_in_page(gpa);
3956  switch (bytes) {
3957  case 1:
3958  exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
3959  break;
3960  case 2:
3961  exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
3962  break;
3963  case 4:
3964  exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
3965  break;
3966  case 8:
3967  exchanged = CMPXCHG64(kaddr, old, new);
3968  break;
3969  default:
3970  BUG();
3971  }
3972  kunmap_atomic(kaddr);
3973  kvm_release_page_dirty(page);
3974 
3975  if (!exchanged)
3976  return X86EMUL_CMPXCHG_FAILED;
3977 
3978  kvm_mmu_pte_write(vcpu, gpa, new, bytes);
3979 
3980  return X86EMUL_CONTINUE;
3981 
3982 emul_write:
3983  printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
3984 
3985  return emulator_write_emulated(ctxt, addr, new, bytes, exception);
3986 }
3987 
3988 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3989 {
3990  /* TODO: String I/O for in kernel device */
3991  int r;
3992 
3993  if (vcpu->arch.pio.in)
3994  r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
3995  vcpu->arch.pio.size, pd);
3996  else
3997  r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3998  vcpu->arch.pio.port, vcpu->arch.pio.size,
3999  pd);
4000  return r;
4001 }
4002 
4003 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4004  unsigned short port, void *val,
4005  unsigned int count, bool in)
4006 {
4007  trace_kvm_pio(!in, port, size, count);
4008 
4009  vcpu->arch.pio.port = port;
4010  vcpu->arch.pio.in = in;
4011  vcpu->arch.pio.count = count;
4012  vcpu->arch.pio.size = size;
4013 
4014  if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4015  vcpu->arch.pio.count = 0;
4016  return 1;
4017  }
4018 
4019  vcpu->run->exit_reason = KVM_EXIT_IO;
4020  vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4021  vcpu->run->io.size = size;
4022  vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4023  vcpu->run->io.count = count;
4024  vcpu->run->io.port = port;
4025 
4026  return 0;
4027 }
4028 
4029 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4030  int size, unsigned short port, void *val,
4031  unsigned int count)
4032 {
4033  struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4034  int ret;
4035 
4036  if (vcpu->arch.pio.count)
4037  goto data_avail;
4038 
4039  ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4040  if (ret) {
4041 data_avail:
4042  memcpy(val, vcpu->arch.pio_data, size * count);
4043  vcpu->arch.pio.count = 0;
4044  return 1;
4045  }
4046 
4047  return 0;
4048 }
4049 
4050 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4051  int size, unsigned short port,
4052  const void *val, unsigned int count)
4053 {
4054  struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4055 
4056  memcpy(vcpu->arch.pio_data, val, size * count);
4057  return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4058 }
4059 
4060 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4061 {
4062  return kvm_x86_ops->get_segment_base(vcpu, seg);
4063 }
4064 
4065 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4066 {
4067  kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4068 }
4069 
4070 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4071 {
4072  if (!need_emulate_wbinvd(vcpu))
4073  return X86EMUL_CONTINUE;
4074 
4075  if (kvm_x86_ops->has_wbinvd_exit()) {
4076  int cpu = get_cpu();
4077 
4078  cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4079  smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4080  wbinvd_ipi, NULL, 1);
4081  put_cpu();
4082  cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4083  } else
4084  wbinvd();
4085  return X86EMUL_CONTINUE;
4086 }
4088 
4089 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4090 {
4092 }
4093 
4094 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4095 {
4096  return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4097 }
4098 
4099 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4100 {
4101 
4102  return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4103 }
4104 
4105 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4106 {
4107  return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4108 }
4109 
4110 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4111 {
4112  struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4113  unsigned long value;
4114 
4115  switch (cr) {
4116  case 0:
4117  value = kvm_read_cr0(vcpu);
4118  break;
4119  case 2:
4120  value = vcpu->arch.cr2;
4121  break;
4122  case 3:
4123  value = kvm_read_cr3(vcpu);
4124  break;
4125  case 4:
4126  value = kvm_read_cr4(vcpu);
4127  break;
4128  case 8:
4129  value = kvm_get_cr8(vcpu);
4130  break;
4131  default:
4132  kvm_err("%s: unexpected cr %u\n", __func__, cr);
4133  return 0;
4134  }
4135 
4136  return value;
4137 }
4138 
4139 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4140 {
4141  struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4142  int res = 0;
4143 
4144  switch (cr) {
4145  case 0:
4146  res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4147  break;
4148  case 2:
4149  vcpu->arch.cr2 = val;
4150  break;
4151  case 3:
4152  res = kvm_set_cr3(vcpu, val);
4153  break;
4154  case 4:
4155  res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4156  break;
4157  case 8:
4158  res = kvm_set_cr8(vcpu, val);
4159  break;
4160  default:
4161  kvm_err("%s: unexpected cr %u\n", __func__, cr);
4162  res = -1;
4163  }
4164 
4165  return res;
4166 }
4167 
4168 static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val)
4169 {
4170  kvm_set_rflags(emul_to_vcpu(ctxt), val);
4171 }
4172 
4173 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4174 {
4175  return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4176 }
4177 
4178 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4179 {
4180  kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4181 }
4182 
4183 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4184 {
4185  kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4186 }
4187 
4188 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4189 {
4190  kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4191 }
4192 
4193 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4194 {
4195  kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4196 }
4197 
4198 static unsigned long emulator_get_cached_segment_base(
4199  struct x86_emulate_ctxt *ctxt, int seg)
4200 {
4201  return get_segment_base(emul_to_vcpu(ctxt), seg);
4202 }
4203 
4204 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4205  struct desc_struct *desc, u32 *base3,
4206  int seg)
4207 {
4208  struct kvm_segment var;
4209 
4210  kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4211  *selector = var.selector;
4212 
4213  if (var.unusable)
4214  return false;
4215 
4216  if (var.g)
4217  var.limit >>= 12;
4218  set_desc_limit(desc, var.limit);
4219  set_desc_base(desc, (unsigned long)var.base);
4220 #ifdef CONFIG_X86_64
4221  if (base3)
4222  *base3 = var.base >> 32;
4223 #endif
4224  desc->type = var.type;
4225  desc->s = var.s;
4226  desc->dpl = var.dpl;
4227  desc->p = var.present;
4228  desc->avl = var.avl;
4229  desc->l = var.l;
4230  desc->d = var.db;
4231  desc->g = var.g;
4232 
4233  return true;
4234 }
4235 
4236 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4237  struct desc_struct *desc, u32 base3,
4238  int seg)
4239 {
4240  struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4241  struct kvm_segment var;
4242 
4243  var.selector = selector;
4244  var.base = get_desc_base(desc);
4245 #ifdef CONFIG_X86_64
4246  var.base |= ((u64)base3) << 32;
4247 #endif
4248  var.limit = get_desc_limit(desc);
4249  if (desc->g)
4250  var.limit = (var.limit << 12) | 0xfff;
4251  var.type = desc->type;
4252  var.present = desc->p;
4253  var.dpl = desc->dpl;
4254  var.db = desc->d;
4255  var.s = desc->s;
4256  var.l = desc->l;
4257  var.g = desc->g;
4258  var.avl = desc->avl;
4259  var.present = desc->p;
4260  var.unusable = !var.present;
4261  var.padding = 0;
4262 
4263  kvm_set_segment(vcpu, &var, seg);
4264  return;
4265 }
4266 
4267 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4268  u32 msr_index, u64 *pdata)
4269 {
4270  return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4271 }
4272 
4273 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4274  u32 msr_index, u64 data)
4275 {
4276  return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
4277 }
4278 
4279 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4280  u32 pmc, u64 *pdata)
4281 {
4282  return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4283 }
4284 
4285 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4286 {
4287  emul_to_vcpu(ctxt)->arch.halt_request = 1;
4288 }
4289 
4290 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4291 {
4292  preempt_disable();
4294  /*
4295  * CR0.TS may reference the host fpu state, not the guest fpu state,
4296  * so it may be clear at this point.
4297  */
4298  clts();
4299 }
4300 
4301 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4302 {
4303  preempt_enable();
4304 }
4305 
4306 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4307  struct x86_instruction_info *info,
4308  enum x86_intercept_stage stage)
4309 {
4310  return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4311 }
4312 
4313 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4314  u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4315 {
4316  kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4317 }
4318 
4319 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4320 {
4321  return kvm_register_read(emul_to_vcpu(ctxt), reg);
4322 }
4323 
4324 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4325 {
4326  kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4327 }
4328 
4329 static const struct x86_emulate_ops emulate_ops = {
4330  .read_gpr = emulator_read_gpr,
4331  .write_gpr = emulator_write_gpr,
4332  .read_std = kvm_read_guest_virt_system,
4333  .write_std = kvm_write_guest_virt_system,
4334  .fetch = kvm_fetch_guest_virt,
4335  .read_emulated = emulator_read_emulated,
4336  .write_emulated = emulator_write_emulated,
4337  .cmpxchg_emulated = emulator_cmpxchg_emulated,
4338  .invlpg = emulator_invlpg,
4339  .pio_in_emulated = emulator_pio_in_emulated,
4340  .pio_out_emulated = emulator_pio_out_emulated,
4341  .get_segment = emulator_get_segment,
4342  .set_segment = emulator_set_segment,
4343  .get_cached_segment_base = emulator_get_cached_segment_base,
4344  .get_gdt = emulator_get_gdt,
4345  .get_idt = emulator_get_idt,
4346  .set_gdt = emulator_set_gdt,
4347  .set_idt = emulator_set_idt,
4348  .get_cr = emulator_get_cr,
4349  .set_cr = emulator_set_cr,
4350  .set_rflags = emulator_set_rflags,
4351  .cpl = emulator_get_cpl,
4352  .get_dr = emulator_get_dr,
4353  .set_dr = emulator_set_dr,
4354  .set_msr = emulator_set_msr,
4355  .get_msr = emulator_get_msr,
4356  .read_pmc = emulator_read_pmc,
4357  .halt = emulator_halt,
4358  .wbinvd = emulator_wbinvd,
4359  .fix_hypercall = emulator_fix_hypercall,
4360  .get_fpu = emulator_get_fpu,
4361  .put_fpu = emulator_put_fpu,
4362  .intercept = emulator_intercept,
4363  .get_cpuid = emulator_get_cpuid,
4364 };
4365 
4366 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4367 {
4368  u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4369  /*
4370  * an sti; sti; sequence only disable interrupts for the first
4371  * instruction. So, if the last instruction, be it emulated or
4372  * not, left the system with the INT_STI flag enabled, it
4373  * means that the last instruction is an sti. We should not
4374  * leave the flag on in this case. The same goes for mov ss
4375  */
4376  if (!(int_shadow & mask))
4377  kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4378 }
4379 
4380 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4381 {
4382  struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4383  if (ctxt->exception.vector == PF_VECTOR)
4384  kvm_propagate_fault(vcpu, &ctxt->exception);
4385  else if (ctxt->exception.error_code_valid)
4386  kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4387  ctxt->exception.error_code);
4388  else
4389  kvm_queue_exception(vcpu, ctxt->exception.vector);
4390 }
4391 
4392 static void init_decode_cache(struct x86_emulate_ctxt *ctxt)
4393 {
4394  memset(&ctxt->twobyte, 0,
4395  (void *)&ctxt->_regs - (void *)&ctxt->twobyte);
4396 
4397  ctxt->fetch.start = 0;
4398  ctxt->fetch.end = 0;
4399  ctxt->io_read.pos = 0;
4400  ctxt->io_read.end = 0;
4401  ctxt->mem_read.pos = 0;
4402  ctxt->mem_read.end = 0;
4403 }
4404 
4405 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4406 {
4407  struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4408  int cs_db, cs_l;
4409 
4410  kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4411 
4412  ctxt->eflags = kvm_get_rflags(vcpu);
4413  ctxt->eip = kvm_rip_read(vcpu);
4414  ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
4415  (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
4416  cs_l ? X86EMUL_MODE_PROT64 :
4417  cs_db ? X86EMUL_MODE_PROT32 :
4419  ctxt->guest_mode = is_guest_mode(vcpu);
4420 
4421  init_decode_cache(ctxt);
4422  vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4423 }
4424 
4425 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4426 {
4427  struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4428  int ret;
4429 
4430  init_emulate_ctxt(vcpu);
4431 
4432  ctxt->op_bytes = 2;
4433  ctxt->ad_bytes = 2;
4434  ctxt->_eip = ctxt->eip + inc_eip;
4435  ret = emulate_int_real(ctxt, irq);
4436 
4437  if (ret != X86EMUL_CONTINUE)
4438  return EMULATE_FAIL;
4439 
4440  ctxt->eip = ctxt->_eip;
4441  kvm_rip_write(vcpu, ctxt->eip);
4442  kvm_set_rflags(vcpu, ctxt->eflags);
4443 
4444  if (irq == NMI_VECTOR)
4445  vcpu->arch.nmi_pending = 0;
4446  else
4447  vcpu->arch.interrupt.pending = false;
4448 
4449  return EMULATE_DONE;
4450 }
4452 
4453 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4454 {
4455  int r = EMULATE_DONE;
4456 
4457  ++vcpu->stat.insn_emulation_fail;
4459  if (!is_guest_mode(vcpu)) {
4460  vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4461  vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4462  vcpu->run->internal.ndata = 0;
4463  r = EMULATE_FAIL;
4464  }
4466 
4467  return r;
4468 }
4469 
4470 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
4471 {
4472  gpa_t gpa;
4473  pfn_t pfn;
4474 
4475  if (tdp_enabled)
4476  return false;
4477 
4478  /*
4479  * if emulation was due to access to shadowed page table
4480  * and it failed try to unshadow page and re-enter the
4481  * guest to let CPU execute the instruction.
4482  */
4483  if (kvm_mmu_unprotect_page_virt(vcpu, gva))
4484  return true;
4485 
4486  gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
4487 
4488  if (gpa == UNMAPPED_GVA)
4489  return true; /* let cpu generate fault */
4490 
4491  /*
4492  * Do not retry the unhandleable instruction if it faults on the
4493  * readonly host memory, otherwise it will goto a infinite loop:
4494  * retry instruction -> write #PF -> emulation fail -> retry
4495  * instruction -> ...
4496  */
4497  pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
4498  if (!is_error_pfn(pfn)) {
4499  kvm_release_pfn_clean(pfn);
4500  return true;
4501  }
4502 
4503  return false;
4504 }
4505 
4506 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
4507  unsigned long cr2, int emulation_type)
4508 {
4509  struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4510  unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
4511 
4512  last_retry_eip = vcpu->arch.last_retry_eip;
4513  last_retry_addr = vcpu->arch.last_retry_addr;
4514 
4515  /*
4516  * If the emulation is caused by #PF and it is non-page_table
4517  * writing instruction, it means the VM-EXIT is caused by shadow
4518  * page protected, we can zap the shadow page and retry this
4519  * instruction directly.
4520  *
4521  * Note: if the guest uses a non-page-table modifying instruction
4522  * on the PDE that points to the instruction, then we will unmap
4523  * the instruction and go to an infinite loop. So, we cache the
4524  * last retried eip and the last fault address, if we meet the eip
4525  * and the address again, we can break out of the potential infinite
4526  * loop.
4527  */
4528  vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
4529 
4530  if (!(emulation_type & EMULTYPE_RETRY))
4531  return false;
4532 
4533  if (x86_page_table_writing_insn(ctxt))
4534  return false;
4535 
4536  if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
4537  return false;
4538 
4539  vcpu->arch.last_retry_eip = ctxt->eip;
4540  vcpu->arch.last_retry_addr = cr2;
4541 
4542  if (!vcpu->arch.mmu.direct_map)
4543  gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4544 
4545  kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4546 
4547  return true;
4548 }
4549 
4550 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
4551 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
4552 
4554  unsigned long cr2,
4555  int emulation_type,
4556  void *insn,
4557  int insn_len)
4558 {
4559  int r;
4560  struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4561  bool writeback = true;
4562 
4563  kvm_clear_exception_queue(vcpu);
4564 
4565  if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4566  init_emulate_ctxt(vcpu);
4567  ctxt->interruptibility = 0;
4568  ctxt->have_exception = false;
4569  ctxt->perm_ok = false;
4570 
4572  = emulation_type & EMULTYPE_TRAP_UD;
4573 
4574  r = x86_decode_insn(ctxt, insn, insn_len);
4575 
4577  ++vcpu->stat.insn_emulation;
4578  if (r != EMULATION_OK) {
4579  if (emulation_type & EMULTYPE_TRAP_UD)
4580  return EMULATE_FAIL;
4581  if (reexecute_instruction(vcpu, cr2))
4582  return EMULATE_DONE;
4583  if (emulation_type & EMULTYPE_SKIP)
4584  return EMULATE_FAIL;
4585  return handle_emulation_failure(vcpu);
4586  }
4587  }
4588 
4589  if (emulation_type & EMULTYPE_SKIP) {
4590  kvm_rip_write(vcpu, ctxt->_eip);
4591  return EMULATE_DONE;
4592  }
4593 
4594  if (retry_instruction(ctxt, cr2, emulation_type))
4595  return EMULATE_DONE;
4596 
4597  /* this is needed for vmware backdoor interface to work since it
4598  changes registers values during IO operation */
4599  if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
4600  vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4602  }
4603 
4604 restart:
4605  r = x86_emulate_insn(ctxt);
4606 
4607  if (r == EMULATION_INTERCEPTED)
4608  return EMULATE_DONE;
4609 
4610  if (r == EMULATION_FAILED) {
4611  if (reexecute_instruction(vcpu, cr2))
4612  return EMULATE_DONE;
4613 
4614  return handle_emulation_failure(vcpu);
4615  }
4616 
4617  if (ctxt->have_exception) {
4618  inject_emulated_exception(vcpu);
4619  r = EMULATE_DONE;
4620  } else if (vcpu->arch.pio.count) {
4621  if (!vcpu->arch.pio.in)
4622  vcpu->arch.pio.count = 0;
4623  else {
4624  writeback = false;
4625  vcpu->arch.complete_userspace_io = complete_emulated_pio;
4626  }
4627  r = EMULATE_DO_MMIO;
4628  } else if (vcpu->mmio_needed) {
4629  if (!vcpu->mmio_is_write)
4630  writeback = false;
4631  r = EMULATE_DO_MMIO;
4632  vcpu->arch.complete_userspace_io = complete_emulated_mmio;
4633  } else if (r == EMULATION_RESTART)
4634  goto restart;
4635  else
4636  r = EMULATE_DONE;
4637 
4638  if (writeback) {
4639  toggle_interruptibility(vcpu, ctxt->interruptibility);
4640  kvm_set_rflags(vcpu, ctxt->eflags);
4641  kvm_make_request(KVM_REQ_EVENT, vcpu);
4642  vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
4643  kvm_rip_write(vcpu, ctxt->eip);
4644  } else
4645  vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
4646 
4647  return r;
4648 }
4650 
4651 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4652 {
4653  unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4654  int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
4655  size, port, &val, 1);
4656  /* do not return to emulator after return from userspace */
4657  vcpu->arch.pio.count = 0;
4658  return ret;
4659 }
4661 
4662 static void tsc_bad(void *info)
4663 {
4664  __this_cpu_write(cpu_tsc_khz, 0);
4665 }
4666 
4667 static void tsc_khz_changed(void *data)
4668 {
4669  struct cpufreq_freqs *freq = data;
4670  unsigned long khz = 0;
4671 
4672  if (data)
4673  khz = freq->new;
4674  else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4676  if (!khz)
4677  khz = tsc_khz;
4678  __this_cpu_write(cpu_tsc_khz, khz);
4679 }
4680 
4681 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4682  void *data)
4683 {
4684  struct cpufreq_freqs *freq = data;
4685  struct kvm *kvm;
4686  struct kvm_vcpu *vcpu;
4687  int i, send_ipi = 0;
4688 
4689  /*
4690  * We allow guests to temporarily run on slowing clocks,
4691  * provided we notify them after, or to run on accelerating
4692  * clocks, provided we notify them before. Thus time never
4693  * goes backwards.
4694  *
4695  * However, we have a problem. We can't atomically update
4696  * the frequency of a given CPU from this function; it is
4697  * merely a notifier, which can be called from any CPU.
4698  * Changing the TSC frequency at arbitrary points in time
4699  * requires a recomputation of local variables related to
4700  * the TSC for each VCPU. We must flag these local variables
4701  * to be updated and be sure the update takes place with the
4702  * new frequency before any guests proceed.
4703  *
4704  * Unfortunately, the combination of hotplug CPU and frequency
4705  * change creates an intractable locking scenario; the order
4706  * of when these callouts happen is undefined with respect to
4707  * CPU hotplug, and they can race with each other. As such,
4708  * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4709  * undefined; you can actually have a CPU frequency change take
4710  * place in between the computation of X and the setting of the
4711  * variable. To protect against this problem, all updates of
4712  * the per_cpu tsc_khz variable are done in an interrupt
4713  * protected IPI, and all callers wishing to update the value
4714  * must wait for a synchronous IPI to complete (which is trivial
4715  * if the caller is on the CPU already). This establishes the
4716  * necessary total order on variable updates.
4717  *
4718  * Note that because a guest time update may take place
4719  * anytime after the setting of the VCPU's request bit, the
4720  * correct TSC value must be set before the request. However,
4721  * to ensure the update actually makes it to any guest which
4722  * starts running in hardware virtualization between the set
4723  * and the acquisition of the spinlock, we must also ping the
4724  * CPU after setting the request bit.
4725  *
4726  */
4727 
4728  if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
4729  return 0;
4730  if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
4731  return 0;
4732 
4733  smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4734 
4735  raw_spin_lock(&kvm_lock);
4736  list_for_each_entry(kvm, &vm_list, vm_list) {
4737  kvm_for_each_vcpu(i, vcpu, kvm) {
4738  if (vcpu->cpu != freq->cpu)
4739  continue;
4740  kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4741  if (vcpu->cpu != smp_processor_id())
4742  send_ipi = 1;
4743  }
4744  }
4745  raw_spin_unlock(&kvm_lock);
4746 
4747  if (freq->old < freq->new && send_ipi) {
4748  /*
4749  * We upscale the frequency. Must make the guest
4750  * doesn't see old kvmclock values while running with
4751  * the new frequency, otherwise we risk the guest sees
4752  * time go backwards.
4753  *
4754  * In case we update the frequency for another cpu
4755  * (which might be in guest context) send an interrupt
4756  * to kick the cpu out of guest context. Next time
4757  * guest context is entered kvmclock will be updated,
4758  * so the guest will not see stale values.
4759  */
4760  smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4761  }
4762  return 0;
4763 }
4764 
4765 static struct notifier_block kvmclock_cpufreq_notifier_block = {
4766  .notifier_call = kvmclock_cpufreq_notifier
4767 };
4768 
4769 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
4770  unsigned long action, void *hcpu)
4771 {
4772  unsigned int cpu = (unsigned long)hcpu;
4773 
4774  switch (action) {
4775  case CPU_ONLINE:
4776  case CPU_DOWN_FAILED:
4777  smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4778  break;
4779  case CPU_DOWN_PREPARE:
4780  smp_call_function_single(cpu, tsc_bad, NULL, 1);
4781  break;
4782  }
4783  return NOTIFY_OK;
4784 }
4785 
4786 static struct notifier_block kvmclock_cpu_notifier_block = {
4787  .notifier_call = kvmclock_cpu_notifier,
4788  .priority = -INT_MAX
4789 };
4790 
4791 static void kvm_timer_init(void)
4792 {
4793  int cpu;
4794 
4795  max_tsc_khz = tsc_khz;
4796  register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4797  if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
4798 #ifdef CONFIG_CPU_FREQ
4799  struct cpufreq_policy policy;
4800  memset(&policy, 0, sizeof(policy));
4801  cpu = get_cpu();
4802  cpufreq_get_policy(&policy, cpu);
4803  if (policy.cpuinfo.max_freq)
4804  max_tsc_khz = policy.cpuinfo.max_freq;
4805  put_cpu();
4806 #endif
4807  cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
4809  }
4810  pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
4811  for_each_online_cpu(cpu)
4812  smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4813 }
4814 
4816 
4818 {
4819  return __this_cpu_read(current_vcpu) != NULL;
4820 }
4821 
4822 static int kvm_is_user_mode(void)
4823 {
4824  int user_mode = 3;
4825 
4827  user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
4828 
4829  return user_mode != 0;
4830 }
4831 
4832 static unsigned long kvm_get_guest_ip(void)
4833 {
4834  unsigned long ip = 0;
4835 
4837  ip = kvm_rip_read(__this_cpu_read(current_vcpu));
4838 
4839  return ip;
4840 }
4841 
4842 static struct perf_guest_info_callbacks kvm_guest_cbs = {
4843  .is_in_guest = kvm_is_in_guest,
4844  .is_user_mode = kvm_is_user_mode,
4845  .get_guest_ip = kvm_get_guest_ip,
4846 };
4847 
4849 {
4851 }
4853 
4854 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
4855 {
4857 }
4859 
4860 static void kvm_set_mmio_spte_mask(void)
4861 {
4862  u64 mask;
4863  int maxphyaddr = boot_cpu_data.x86_phys_bits;
4864 
4865  /*
4866  * Set the reserved bits and the present bit of an paging-structure
4867  * entry to generate page fault with PFER.RSV = 1.
4868  */
4869  mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr;
4870  mask |= 1ull;
4871 
4872 #ifdef CONFIG_X86_64
4873  /*
4874  * If reserved bit is not supported, clear the present bit to disable
4875  * mmio page fault.
4876  */
4877  if (maxphyaddr == 52)
4878  mask &= ~1ull;
4879 #endif
4880 
4882 }
4883 
4884 int kvm_arch_init(void *opaque)
4885 {
4886  int r;
4887  struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
4888 
4889  if (kvm_x86_ops) {
4890  printk(KERN_ERR "kvm: already loaded the other module\n");
4891  r = -EEXIST;
4892  goto out;
4893  }
4894 
4895  if (!ops->cpu_has_kvm_support()) {
4896  printk(KERN_ERR "kvm: no hardware support\n");
4897  r = -EOPNOTSUPP;
4898  goto out;
4899  }
4900  if (ops->disabled_by_bios()) {
4901  printk(KERN_ERR "kvm: disabled by bios\n");
4902  r = -EOPNOTSUPP;
4903  goto out;
4904  }
4905 
4906  r = kvm_mmu_module_init();
4907  if (r)
4908  goto out;
4909 
4910  kvm_set_mmio_spte_mask();
4911  kvm_init_msr_list();
4912 
4913  kvm_x86_ops = ops;
4916 
4917  kvm_timer_init();
4918 
4919  perf_register_guest_info_callbacks(&kvm_guest_cbs);
4920 
4921  if (cpu_has_xsave)
4922  host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
4923 
4924  kvm_lapic_init();
4925  return 0;
4926 
4927 out:
4928  return r;
4929 }
4930 
4931 void kvm_arch_exit(void)
4932 {
4933  perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
4934 
4935  if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4936  cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
4938  unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4939  kvm_x86_ops = NULL;
4941 }
4942 
4943 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
4944 {
4945  ++vcpu->stat.halt_exits;
4946  if (irqchip_in_kernel(vcpu->kvm)) {
4947  vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
4948  return 1;
4949  } else {
4950  vcpu->run->exit_reason = KVM_EXIT_HLT;
4951  return 0;
4952  }
4953 }
4955 
4956 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
4957 {
4958  u64 param, ingpa, outgpa, ret;
4959  uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
4960  bool fast, longmode;
4961  int cs_db, cs_l;
4962 
4963  /*
4964  * hypercall generates UD from non zero cpl and real mode
4965  * per HYPER-V spec
4966  */
4967  if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
4969  return 0;
4970  }
4971 
4972  kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4973  longmode = is_long_mode(vcpu) && cs_l == 1;
4974 
4975  if (!longmode) {
4976  param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
4977  (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
4978  ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
4979  (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
4980  outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
4981  (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
4982  }
4983 #ifdef CONFIG_X86_64
4984  else {
4985  param = kvm_register_read(vcpu, VCPU_REGS_RCX);
4986  ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
4987  outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
4988  }
4989 #endif
4990 
4991  code = param & 0xffff;
4992  fast = (param >> 16) & 0x1;
4993  rep_cnt = (param >> 32) & 0xfff;
4994  rep_idx = (param >> 48) & 0xfff;
4995 
4996  trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
4997 
4998  switch (code) {
5000  kvm_vcpu_on_spin(vcpu);
5001  break;
5002  default:
5004  break;
5005  }
5006 
5007  ret = res | (((u64)rep_done & 0xfff) << 32);
5008  if (longmode) {
5009  kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5010  } else {
5011  kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5012  kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5013  }
5014 
5015  return 1;
5016 }
5017 
5019 {
5020  unsigned long nr, a0, a1, a2, a3, ret;
5021  int r = 1;
5022 
5023  if (kvm_hv_hypercall_enabled(vcpu->kvm))
5024  return kvm_hv_hypercall(vcpu);
5025 
5026  nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5027  a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5028  a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5029  a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5030  a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5031 
5032  trace_kvm_hypercall(nr, a0, a1, a2, a3);
5033 
5034  if (!is_long_mode(vcpu)) {
5035  nr &= 0xFFFFFFFF;
5036  a0 &= 0xFFFFFFFF;
5037  a1 &= 0xFFFFFFFF;
5038  a2 &= 0xFFFFFFFF;
5039  a3 &= 0xFFFFFFFF;
5040  }
5041 
5042  if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5043  ret = -KVM_EPERM;
5044  goto out;
5045  }
5046 
5047  switch (nr) {
5048  case KVM_HC_VAPIC_POLL_IRQ:
5049  ret = 0;
5050  break;
5051  default:
5052  ret = -KVM_ENOSYS;
5053  break;
5054  }
5055 out:
5056  kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5057  ++vcpu->stat.hypercalls;
5058  return r;
5059 }
5061 
5063 {
5064  struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5065  char instruction[3];
5066  unsigned long rip = kvm_rip_read(vcpu);
5067 
5068  /*
5069  * Blow out the MMU to ensure that no other VCPU has an active mapping
5070  * to ensure that the updated hypercall appears atomically across all
5071  * VCPUs.
5072  */
5073  kvm_mmu_zap_all(vcpu->kvm);
5074 
5075  kvm_x86_ops->patch_hypercall(vcpu, instruction);
5076 
5077  return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5078 }
5079 
5080 /*
5081  * Check if userspace requested an interrupt window, and that the
5082  * interrupt window is open.
5083  *
5084  * No need to exit to userspace if we already have an interrupt queued.
5085  */
5086 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5087 {
5088  return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5089  vcpu->run->request_interrupt_window &&
5091 }
5092 
5093 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5094 {
5095  struct kvm_run *kvm_run = vcpu->run;
5096 
5097  kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5098  kvm_run->cr8 = kvm_get_cr8(vcpu);
5099  kvm_run->apic_base = kvm_get_apic_base(vcpu);
5100  if (irqchip_in_kernel(vcpu->kvm))
5101  kvm_run->ready_for_interrupt_injection = 1;
5102  else
5105  !kvm_cpu_has_interrupt(vcpu) &&
5106  !kvm_event_needs_reinjection(vcpu);
5107 }
5108 
5109 static int vapic_enter(struct kvm_vcpu *vcpu)
5110 {
5111  struct kvm_lapic *apic = vcpu->arch.apic;
5112  struct page *page;
5113 
5114  if (!apic || !apic->vapic_addr)
5115  return 0;
5116 
5117  page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5118  if (is_error_page(page))
5119  return -EFAULT;
5120 
5121  vcpu->arch.apic->vapic_page = page;
5122  return 0;
5123 }
5124 
5125 static void vapic_exit(struct kvm_vcpu *vcpu)
5126 {
5127  struct kvm_lapic *apic = vcpu->arch.apic;
5128  int idx;
5129 
5130  if (!apic || !apic->vapic_addr)
5131  return;
5132 
5133  idx = srcu_read_lock(&vcpu->kvm->srcu);
5135  mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5136  srcu_read_unlock(&vcpu->kvm->srcu, idx);
5137 }
5138 
5139 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5140 {
5141  int max_irr, tpr;
5142 
5143  if (!kvm_x86_ops->update_cr8_intercept)
5144  return;
5145 
5146  if (!vcpu->arch.apic)
5147  return;
5148 
5149  if (!vcpu->arch.apic->vapic_addr)
5150  max_irr = kvm_lapic_find_highest_irr(vcpu);
5151  else
5152  max_irr = -1;
5153 
5154  if (max_irr != -1)
5155  max_irr >>= 4;
5156 
5157  tpr = kvm_lapic_get_cr8(vcpu);
5158 
5159  kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5160 }
5161 
5162 static void inject_pending_event(struct kvm_vcpu *vcpu)
5163 {
5164  /* try to reinject previous events if any */
5165  if (vcpu->arch.exception.pending) {
5166  trace_kvm_inj_exception(vcpu->arch.exception.nr,
5167  vcpu->arch.exception.has_error_code,
5168  vcpu->arch.exception.error_code);
5169  kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5170  vcpu->arch.exception.has_error_code,
5171  vcpu->arch.exception.error_code,
5172  vcpu->arch.exception.reinject);
5173  return;
5174  }
5175 
5176  if (vcpu->arch.nmi_injected) {
5177  kvm_x86_ops->set_nmi(vcpu);
5178  return;
5179  }
5180 
5181  if (vcpu->arch.interrupt.pending) {
5182  kvm_x86_ops->set_irq(vcpu);
5183  return;
5184  }
5185 
5186  /* try to inject new event if pending */
5187  if (vcpu->arch.nmi_pending) {
5188  if (kvm_x86_ops->nmi_allowed(vcpu)) {
5189  --vcpu->arch.nmi_pending;
5190  vcpu->arch.nmi_injected = true;
5191  kvm_x86_ops->set_nmi(vcpu);
5192  }
5193  } else if (kvm_cpu_has_interrupt(vcpu)) {
5194  if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5195  kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5196  false);
5197  kvm_x86_ops->set_irq(vcpu);
5198  }
5199  }
5200 }
5201 
5202 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
5203 {
5204  if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
5205  !vcpu->guest_xcr0_loaded) {
5206  /* kvm_set_xcr() also depends on this */
5207  xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
5208  vcpu->guest_xcr0_loaded = 1;
5209  }
5210 }
5211 
5212 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
5213 {
5214  if (vcpu->guest_xcr0_loaded) {
5215  if (vcpu->arch.xcr0 != host_xcr0)
5216  xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
5217  vcpu->guest_xcr0_loaded = 0;
5218  }
5219 }
5220 
5221 static void process_nmi(struct kvm_vcpu *vcpu)
5222 {
5223  unsigned limit = 2;
5224 
5225  /*
5226  * x86 is limited to one NMI running, and one NMI pending after it.
5227  * If an NMI is already in progress, limit further NMIs to just one.
5228  * Otherwise, allow two (and we'll inject the first one immediately).
5229  */
5230  if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5231  limit = 1;
5232 
5233  vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5234  vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5235  kvm_make_request(KVM_REQ_EVENT, vcpu);
5236 }
5237 
5238 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5239 {
5240  int r;
5241  bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5242  vcpu->run->request_interrupt_window;
5243  bool req_immediate_exit = 0;
5244 
5245  if (vcpu->requests) {
5246  if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5247  kvm_mmu_unload(vcpu);
5248  if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5249  __kvm_migrate_timers(vcpu);
5250  if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5251  r = kvm_guest_time_update(vcpu);
5252  if (unlikely(r))
5253  goto out;
5254  }
5255  if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5256  kvm_mmu_sync_roots(vcpu);
5257  if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5258  kvm_x86_ops->tlb_flush(vcpu);
5259  if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5260  vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5261  r = 0;
5262  goto out;
5263  }
5264  if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5265  vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5266  r = 0;
5267  goto out;
5268  }
5269  if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5270  vcpu->fpu_active = 0;
5271  kvm_x86_ops->fpu_deactivate(vcpu);
5272  }
5273  if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5274  /* Page is swapped out. Do synthetic halt */
5275  vcpu->arch.apf.halted = true;
5276  r = 1;
5277  goto out;
5278  }
5279  if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5280  record_steal_time(vcpu);
5281  if (kvm_check_request(KVM_REQ_NMI, vcpu))
5282  process_nmi(vcpu);
5283  req_immediate_exit =
5284  kvm_check_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
5285  if (kvm_check_request(KVM_REQ_PMU, vcpu))
5286  kvm_handle_pmu_event(vcpu);
5287  if (kvm_check_request(KVM_REQ_PMI, vcpu))
5288  kvm_deliver_pmi(vcpu);
5289  }
5290 
5291  if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5292  inject_pending_event(vcpu);
5293 
5294  /* enable NMI/IRQ window open exits if needed */
5295  if (vcpu->arch.nmi_pending)
5296  kvm_x86_ops->enable_nmi_window(vcpu);
5297  else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
5298  kvm_x86_ops->enable_irq_window(vcpu);
5299 
5300  if (kvm_lapic_enabled(vcpu)) {
5301  update_cr8_intercept(vcpu);
5303  }
5304  }
5305 
5306  r = kvm_mmu_reload(vcpu);
5307  if (unlikely(r)) {
5308  goto cancel_injection;
5309  }
5310 
5311  preempt_disable();
5312 
5313  kvm_x86_ops->prepare_guest_switch(vcpu);
5314  if (vcpu->fpu_active)
5315  kvm_load_guest_fpu(vcpu);
5316  kvm_load_guest_xcr0(vcpu);
5317 
5318  vcpu->mode = IN_GUEST_MODE;
5319 
5320  /* We should set ->mode before check ->requests,
5321  * see the comment in make_all_cpus_request.
5322  */
5323  smp_mb();
5324 
5326 
5327  if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5328  || need_resched() || signal_pending(current)) {
5329  vcpu->mode = OUTSIDE_GUEST_MODE;
5330  smp_wmb();
5331  local_irq_enable();
5332  preempt_enable();
5333  r = 1;
5334  goto cancel_injection;
5335  }
5336 
5337  srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5338 
5339  if (req_immediate_exit)
5340  smp_send_reschedule(vcpu->cpu);
5341 
5342  kvm_guest_enter();
5343 
5344  if (unlikely(vcpu->arch.switch_db_regs)) {
5345  set_debugreg(0, 7);
5346  set_debugreg(vcpu->arch.eff_db[0], 0);
5347  set_debugreg(vcpu->arch.eff_db[1], 1);
5348  set_debugreg(vcpu->arch.eff_db[2], 2);
5349  set_debugreg(vcpu->arch.eff_db[3], 3);
5350  }
5351 
5352  trace_kvm_entry(vcpu->vcpu_id);
5353  kvm_x86_ops->run(vcpu);
5354 
5355  /*
5356  * If the guest has used debug registers, at least dr7
5357  * will be disabled while returning to the host.
5358  * If we don't have active breakpoints in the host, we don't
5359  * care about the messed up debug address registers. But if
5360  * we have some of them active, restore the old state.
5361  */
5362  if (hw_breakpoint_active())
5364 
5365  vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu);
5366 
5367  vcpu->mode = OUTSIDE_GUEST_MODE;
5368  smp_wmb();
5369  local_irq_enable();
5370 
5371  ++vcpu->stat.exits;
5372 
5373  /*
5374  * We must have an instruction between local_irq_enable() and
5375  * kvm_guest_exit(), so the timer interrupt isn't delayed by
5376  * the interrupt shadow. The stat.exits increment will do nicely.
5377  * But we need to prevent reordering, hence this barrier():
5378  */
5379  barrier();
5380 
5381  kvm_guest_exit();
5382 
5383  preempt_enable();
5384 
5385  vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5386 
5387  /*
5388  * Profile KVM exit RIPs:
5389  */
5390  if (unlikely(prof_on == KVM_PROFILING)) {
5391  unsigned long rip = kvm_rip_read(vcpu);
5392  profile_hit(KVM_PROFILING, (void *)rip);
5393  }
5394 
5395  if (unlikely(vcpu->arch.tsc_always_catchup))
5396  kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5397 
5398  if (vcpu->arch.apic_attention)
5400 
5401  r = kvm_x86_ops->handle_exit(vcpu);
5402  return r;
5403 
5404 cancel_injection:
5405  kvm_x86_ops->cancel_injection(vcpu);
5406  if (unlikely(vcpu->arch.apic_attention))
5408 out:
5409  return r;
5410 }
5411 
5412 
5413 static int __vcpu_run(struct kvm_vcpu *vcpu)
5414 {
5415  int r;
5416  struct kvm *kvm = vcpu->kvm;
5417 
5418  if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5419  pr_debug("vcpu %d received sipi with vector # %x\n",
5420  vcpu->vcpu_id, vcpu->arch.sipi_vector);
5421  kvm_lapic_reset(vcpu);
5422  r = kvm_arch_vcpu_reset(vcpu);
5423  if (r)
5424  return r;
5425  vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5426  }
5427 
5428  vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5429  r = vapic_enter(vcpu);
5430  if (r) {
5431  srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5432  return r;
5433  }
5434 
5435  r = 1;
5436  while (r > 0) {
5437  if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5438  !vcpu->arch.apf.halted)
5439  r = vcpu_enter_guest(vcpu);
5440  else {
5441  srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5442  kvm_vcpu_block(vcpu);
5443  vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5444  if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5445  {
5446  switch(vcpu->arch.mp_state) {
5447  case KVM_MP_STATE_HALTED:
5448  vcpu->arch.mp_state =
5450  case KVM_MP_STATE_RUNNABLE:
5451  vcpu->arch.apf.halted = false;
5452  break;
5454  default:
5455  r = -EINTR;
5456  break;
5457  }
5458  }
5459  }
5460 
5461  if (r <= 0)
5462  break;
5463 
5465  if (kvm_cpu_has_pending_timer(vcpu))
5467 
5468  if (dm_request_for_irq_injection(vcpu)) {
5469  r = -EINTR;
5470  vcpu->run->exit_reason = KVM_EXIT_INTR;
5471  ++vcpu->stat.request_irq_exits;
5472  }
5473 
5475 
5476  if (signal_pending(current)) {
5477  r = -EINTR;
5478  vcpu->run->exit_reason = KVM_EXIT_INTR;
5479  ++vcpu->stat.signal_exits;
5480  }
5481  if (need_resched()) {
5482  srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5483  kvm_resched(vcpu);
5484  vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5485  }
5486  }
5487 
5488  srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5489 
5490  vapic_exit(vcpu);
5491 
5492  return r;
5493 }
5494 
5495 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
5496 {
5497  int r;
5498  vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5499  r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
5500  srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5501  if (r != EMULATE_DONE)
5502  return 0;
5503  return 1;
5504 }
5505 
5506 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
5507 {
5508  BUG_ON(!vcpu->arch.pio.count);
5509 
5510  return complete_emulated_io(vcpu);
5511 }
5512 
5513 /*
5514  * Implements the following, as a state machine:
5515  *
5516  * read:
5517  * for each fragment
5518  * for each mmio piece in the fragment
5519  * write gpa, len
5520  * exit
5521  * copy data
5522  * execute insn
5523  *
5524  * write:
5525  * for each fragment
5526  * for each mmio piece in the fragment
5527  * write gpa, len
5528  * copy data
5529  * exit
5530  */
5531 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
5532 {
5533  struct kvm_run *run = vcpu->run;
5534  struct kvm_mmio_fragment *frag;
5535  unsigned len;
5536 
5537  BUG_ON(!vcpu->mmio_needed);
5538 
5539  /* Complete previous fragment */
5540  frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
5541  len = min(8u, frag->len);
5542  if (!vcpu->mmio_is_write)
5543  memcpy(frag->data, run->mmio.data, len);
5544 
5545  if (frag->len <= 8) {
5546  /* Switch to the next fragment. */
5547  frag++;
5548  vcpu->mmio_cur_fragment++;
5549  } else {
5550  /* Go forward to the next mmio piece. */
5551  frag->data += len;
5552  frag->gpa += len;
5553  frag->len -= len;
5554  }
5555 
5556  if (vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments) {
5557  vcpu->mmio_needed = 0;
5558  if (vcpu->mmio_is_write)
5559  return 1;
5560  vcpu->mmio_read_completed = 1;
5561  return complete_emulated_io(vcpu);
5562  }
5563 
5564  run->exit_reason = KVM_EXIT_MMIO;
5565  run->mmio.phys_addr = frag->gpa;
5566  if (vcpu->mmio_is_write)
5567  memcpy(run->mmio.data, frag->data, min(8u, frag->len));
5568  run->mmio.len = min(8u, frag->len);
5569  run->mmio.is_write = vcpu->mmio_is_write;
5570  vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5571  return 0;
5572 }
5573 
5574 
5575 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
5576 {
5577  int r;
5578  sigset_t sigsaved;
5579 
5581  return -ENOMEM;
5582 
5583  if (vcpu->sigset_active)
5584  sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
5585 
5586  if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
5587  kvm_vcpu_block(vcpu);
5589  r = -EAGAIN;
5590  goto out;
5591  }
5592 
5593  /* re-sync apic's tpr */
5594  if (!irqchip_in_kernel(vcpu->kvm)) {
5595  if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
5596  r = -EINVAL;
5597  goto out;
5598  }
5599  }
5600 
5601  if (unlikely(vcpu->arch.complete_userspace_io)) {
5602  int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
5603  vcpu->arch.complete_userspace_io = NULL;
5604  r = cui(vcpu);
5605  if (r <= 0)
5606  goto out;
5607  } else
5608  WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
5609 
5610  r = __vcpu_run(vcpu);
5611 
5612 out:
5613  post_kvm_run_save(vcpu);
5614  if (vcpu->sigset_active)
5615  sigprocmask(SIG_SETMASK, &sigsaved, NULL);
5616 
5617  return r;
5618 }
5619 
5621 {
5622  if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
5623  /*
5624  * We are here if userspace calls get_regs() in the middle of
5625  * instruction emulation. Registers state needs to be copied
5626  * back from emulation context to vcpu. Userspace shouldn't do
5627  * that usually, but some bad designed PV devices (vmware
5628  * backdoor interface) need this to work
5629  */
5630  emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
5631  vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5632  }
5633  regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
5634  regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
5635  regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
5636  regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
5637  regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
5638  regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
5639  regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
5640  regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
5641 #ifdef CONFIG_X86_64
5642  regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
5643  regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
5644  regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
5645  regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
5646  regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
5647  regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
5648  regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
5649  regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
5650 #endif
5651 
5652  regs->rip = kvm_rip_read(vcpu);
5653  regs->rflags = kvm_get_rflags(vcpu);
5654 
5655  return 0;
5656 }
5657 
5659 {
5660  vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
5661  vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5662 
5663  kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
5664  kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
5665  kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
5666  kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
5667  kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
5668  kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
5669  kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
5670  kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
5671 #ifdef CONFIG_X86_64
5672  kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
5673  kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
5674  kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
5675  kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
5676  kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
5677  kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
5678  kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
5679  kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
5680 #endif
5681 
5682  kvm_rip_write(vcpu, regs->rip);
5683  kvm_set_rflags(vcpu, regs->rflags);
5684 
5685  vcpu->arch.exception.pending = false;
5686 
5687  kvm_make_request(KVM_REQ_EVENT, vcpu);
5688 
5689  return 0;
5690 }
5691 
5692 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
5693 {
5694  struct kvm_segment cs;
5695 
5696  kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
5697  *db = cs.db;
5698  *l = cs.l;
5699 }
5701 
5703  struct kvm_sregs *sregs)
5704 {
5705  struct desc_ptr dt;
5706 
5707  kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5708  kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5709  kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5710  kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5711  kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5712  kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5713 
5714  kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5715  kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5716 
5717  kvm_x86_ops->get_idt(vcpu, &dt);
5718  sregs->idt.limit = dt.size;
5719  sregs->idt.base = dt.address;
5720  kvm_x86_ops->get_gdt(vcpu, &dt);
5721  sregs->gdt.limit = dt.size;
5722  sregs->gdt.base = dt.address;
5723 
5724  sregs->cr0 = kvm_read_cr0(vcpu);
5725  sregs->cr2 = vcpu->arch.cr2;
5726  sregs->cr3 = kvm_read_cr3(vcpu);
5727  sregs->cr4 = kvm_read_cr4(vcpu);
5728  sregs->cr8 = kvm_get_cr8(vcpu);
5729  sregs->efer = vcpu->arch.efer;
5730  sregs->apic_base = kvm_get_apic_base(vcpu);
5731 
5732  memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
5733 
5734  if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
5735  set_bit(vcpu->arch.interrupt.nr,
5736  (unsigned long *)sregs->interrupt_bitmap);
5737 
5738  return 0;
5739 }
5740 
5742  struct kvm_mp_state *mp_state)
5743 {
5744  mp_state->mp_state = vcpu->arch.mp_state;
5745  return 0;
5746 }
5747 
5749  struct kvm_mp_state *mp_state)
5750 {
5751  vcpu->arch.mp_state = mp_state->mp_state;
5752  kvm_make_request(KVM_REQ_EVENT, vcpu);
5753  return 0;
5754 }
5755 
5756 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
5757  int reason, bool has_error_code, u32 error_code)
5758 {
5759  struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5760  int ret;
5761 
5762  init_emulate_ctxt(vcpu);
5763 
5764  ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
5765  has_error_code, error_code);
5766 
5767  if (ret)
5768  return EMULATE_FAIL;
5769 
5770  kvm_rip_write(vcpu, ctxt->eip);
5771  kvm_set_rflags(vcpu, ctxt->eflags);
5772  kvm_make_request(KVM_REQ_EVENT, vcpu);
5773  return EMULATE_DONE;
5774 }
5776 
5778  struct kvm_sregs *sregs)
5779 {
5780  int mmu_reset_needed = 0;
5781  int pending_vec, max_bits, idx;
5782  struct desc_ptr dt;
5783 
5784  if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
5785  return -EINVAL;
5786 
5787  dt.size = sregs->idt.limit;
5788  dt.address = sregs->idt.base;
5789  kvm_x86_ops->set_idt(vcpu, &dt);
5790  dt.size = sregs->gdt.limit;
5791  dt.address = sregs->gdt.base;
5792  kvm_x86_ops->set_gdt(vcpu, &dt);
5793 
5794  vcpu->arch.cr2 = sregs->cr2;
5795  mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
5796  vcpu->arch.cr3 = sregs->cr3;
5797  __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
5798 
5799  kvm_set_cr8(vcpu, sregs->cr8);
5800 
5801  mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
5802  kvm_x86_ops->set_efer(vcpu, sregs->efer);
5803  kvm_set_apic_base(vcpu, sregs->apic_base);
5804 
5805  mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5806  kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5807  vcpu->arch.cr0 = sregs->cr0;
5808 
5809  mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5810  kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5811  if (sregs->cr4 & X86_CR4_OSXSAVE)
5812  kvm_update_cpuid(vcpu);
5813 
5814  idx = srcu_read_lock(&vcpu->kvm->srcu);
5815  if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5816  load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
5817  mmu_reset_needed = 1;
5818  }
5819  srcu_read_unlock(&vcpu->kvm->srcu, idx);
5820 
5821  if (mmu_reset_needed)
5822  kvm_mmu_reset_context(vcpu);
5823 
5824  max_bits = KVM_NR_INTERRUPTS;
5825  pending_vec = find_first_bit(
5826  (const unsigned long *)sregs->interrupt_bitmap, max_bits);
5827  if (pending_vec < max_bits) {
5828  kvm_queue_interrupt(vcpu, pending_vec, false);
5829  pr_debug("Set back pending irq %d\n", pending_vec);
5830  }
5831 
5832  kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5833  kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5834  kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5835  kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5836  kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5837  kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5838 
5839  kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5840  kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5841 
5842  update_cr8_intercept(vcpu);
5843 
5844  /* Older userspace won't unhalt the vcpu on reset. */
5845  if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5846  sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5847  !is_protmode(vcpu))
5848  vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5849 
5850  kvm_make_request(KVM_REQ_EVENT, vcpu);
5851 
5852  return 0;
5853 }
5854 
5856  struct kvm_guest_debug *dbg)
5857 {
5858  unsigned long rflags;
5859  int i, r;
5860 
5862  r = -EBUSY;
5863  if (vcpu->arch.exception.pending)
5864  goto out;
5865  if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5867  else
5869  }
5870 
5871  /*
5872  * Read rflags as long as potentially injected trace flags are still
5873  * filtered out.
5874  */
5875  rflags = kvm_get_rflags(vcpu);
5876 
5877  vcpu->guest_debug = dbg->control;
5878  if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5879  vcpu->guest_debug = 0;
5880 
5881  if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5882  for (i = 0; i < KVM_NR_DB_REGS; ++i)
5883  vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5884  vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
5885  } else {
5886  for (i = 0; i < KVM_NR_DB_REGS; i++)
5887  vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5888  }
5889  kvm_update_dr7(vcpu);
5890 
5892  vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
5893  get_segment_base(vcpu, VCPU_SREG_CS);
5894 
5895  /*
5896  * Trigger an rflags update that will inject or remove the trace
5897  * flags.
5898  */
5899  kvm_set_rflags(vcpu, rflags);
5900 
5901  kvm_x86_ops->update_db_bp_intercept(vcpu);
5902 
5903  r = 0;
5904 
5905 out:
5906 
5907  return r;
5908 }
5909 
5910 /*
5911  * Translate a guest virtual address to a guest physical address.
5912  */
5914  struct kvm_translation *tr)
5915 {
5916  unsigned long vaddr = tr->linear_address;
5917  gpa_t gpa;
5918  int idx;
5919 
5920  idx = srcu_read_lock(&vcpu->kvm->srcu);
5921  gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
5922  srcu_read_unlock(&vcpu->kvm->srcu, idx);
5923  tr->physical_address = gpa;
5924  tr->valid = gpa != UNMAPPED_GVA;
5925  tr->writeable = 1;
5926  tr->usermode = 0;
5927 
5928  return 0;
5929 }
5930 
5932 {
5933  struct i387_fxsave_struct *fxsave =
5934  &vcpu->arch.guest_fpu.state->fxsave;
5935 
5936  memcpy(fpu->fpr, fxsave->st_space, 128);
5937  fpu->fcw = fxsave->cwd;
5938  fpu->fsw = fxsave->swd;
5939  fpu->ftwx = fxsave->twd;
5940  fpu->last_opcode = fxsave->fop;
5941  fpu->last_ip = fxsave->rip;
5942  fpu->last_dp = fxsave->rdp;
5943  memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5944 
5945  return 0;
5946 }
5947 
5949 {
5950  struct i387_fxsave_struct *fxsave =
5951  &vcpu->arch.guest_fpu.state->fxsave;
5952 
5953  memcpy(fxsave->st_space, fpu->fpr, 128);
5954  fxsave->cwd = fpu->fcw;
5955  fxsave->swd = fpu->fsw;
5956  fxsave->twd = fpu->ftwx;
5957  fxsave->fop = fpu->last_opcode;
5958  fxsave->rip = fpu->last_ip;
5959  fxsave->rdp = fpu->last_dp;
5960  memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5961 
5962  return 0;
5963 }
5964 
5965 int fx_init(struct kvm_vcpu *vcpu)
5966 {
5967  int err;
5968 
5969  err = fpu_alloc(&vcpu->arch.guest_fpu);
5970  if (err)
5971  return err;
5972 
5973  fpu_finit(&vcpu->arch.guest_fpu);
5974 
5975  /*
5976  * Ensure guest xcr0 is valid for loading
5977  */
5978  vcpu->arch.xcr0 = XSTATE_FP;
5979 
5980  vcpu->arch.cr0 |= X86_CR0_ET;
5981 
5982  return 0;
5983 }
5985 
5986 static void fx_free(struct kvm_vcpu *vcpu)
5987 {
5988  fpu_free(&vcpu->arch.guest_fpu);
5989 }
5990 
5991 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
5992 {
5993  if (vcpu->guest_fpu_loaded)
5994  return;
5995 
5996  /*
5997  * Restore all possible states in the guest,
5998  * and assume host would use all available bits.
5999  * Guest xcr0 would be loaded later.
6000  */
6001  kvm_put_guest_xcr0(vcpu);
6002  vcpu->guest_fpu_loaded = 1;
6004  fpu_restore_checking(&vcpu->arch.guest_fpu);
6005  trace_kvm_fpu(1);
6006 }
6007 
6008 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
6009 {
6010  kvm_put_guest_xcr0(vcpu);
6011 
6012  if (!vcpu->guest_fpu_loaded)
6013  return;
6014 
6015  vcpu->guest_fpu_loaded = 0;
6016  fpu_save_init(&vcpu->arch.guest_fpu);
6017  __kernel_fpu_end();
6018  ++vcpu->stat.fpu_reload;
6019  kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
6020  trace_kvm_fpu(0);
6021 }
6022 
6023 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
6024 {
6025  kvmclock_reset(vcpu);
6026 
6027  free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6028  fx_free(vcpu);
6029  kvm_x86_ops->vcpu_free(vcpu);
6030 }
6031 
6032 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
6033  unsigned int id)
6034 {
6035  if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
6037  "kvm: SMP vm created on host with unstable TSC; "
6038  "guest TSC will not be reliable\n");
6039  return kvm_x86_ops->vcpu_create(kvm, id);
6040 }
6041 
6043 {
6044  int r;
6045 
6046  vcpu->arch.mtrr_state.have_fixed = 1;
6047  r = vcpu_load(vcpu);
6048  if (r)
6049  return r;
6050  r = kvm_arch_vcpu_reset(vcpu);
6051  if (r == 0)
6052  r = kvm_mmu_setup(vcpu);
6053  vcpu_put(vcpu);
6054 
6055  return r;
6056 }
6057 
6059 {
6060  int r;
6061  vcpu->arch.apf.msr_val = 0;
6062 
6063  r = vcpu_load(vcpu);
6064  BUG_ON(r);
6065  kvm_mmu_unload(vcpu);
6066  vcpu_put(vcpu);
6067 
6068  fx_free(vcpu);
6069  kvm_x86_ops->vcpu_free(vcpu);
6070 }
6071 
6073 {
6074  atomic_set(&vcpu->arch.nmi_queued, 0);
6075  vcpu->arch.nmi_pending = 0;
6076  vcpu->arch.nmi_injected = false;
6077 
6078  memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
6079  vcpu->arch.dr6 = DR6_FIXED_1;
6080  vcpu->arch.dr7 = DR7_FIXED_1;
6081  kvm_update_dr7(vcpu);
6082 
6083  kvm_make_request(KVM_REQ_EVENT, vcpu);
6084  vcpu->arch.apf.msr_val = 0;
6085  vcpu->arch.st.msr_val = 0;
6086 
6087  kvmclock_reset(vcpu);
6088 
6090  kvm_async_pf_hash_reset(vcpu);
6091  vcpu->arch.apf.halted = false;
6092 
6093  kvm_pmu_reset(vcpu);
6094 
6095  return kvm_x86_ops->vcpu_reset(vcpu);
6096 }
6097 
6098 int kvm_arch_hardware_enable(void *garbage)
6099 {
6100  struct kvm *kvm;
6101  struct kvm_vcpu *vcpu;
6102  int i;
6103  int ret;
6104  u64 local_tsc;
6105  u64 max_tsc = 0;
6106  bool stable, backwards_tsc = false;
6107 
6108  kvm_shared_msr_cpu_online();
6109  ret = kvm_x86_ops->hardware_enable(garbage);
6110  if (ret != 0)
6111  return ret;
6112 
6113  local_tsc = native_read_tsc();
6114  stable = !check_tsc_unstable();
6116  kvm_for_each_vcpu(i, vcpu, kvm) {
6117  if (!stable && vcpu->cpu == smp_processor_id())
6119  if (stable && vcpu->arch.last_host_tsc > local_tsc) {
6120  backwards_tsc = true;
6121  if (vcpu->arch.last_host_tsc > max_tsc)
6122  max_tsc = vcpu->arch.last_host_tsc;
6123  }
6124  }
6125  }
6126 
6127  /*
6128  * Sometimes, even reliable TSCs go backwards. This happens on
6129  * platforms that reset TSC during suspend or hibernate actions, but
6130  * maintain synchronization. We must compensate. Fortunately, we can
6131  * detect that condition here, which happens early in CPU bringup,
6132  * before any KVM threads can be running. Unfortunately, we can't
6133  * bring the TSCs fully up to date with real time, as we aren't yet far
6134  * enough into CPU bringup that we know how much real time has actually
6135  * elapsed; our helper function, get_kernel_ns() will be using boot
6136  * variables that haven't been updated yet.
6137  *
6138  * So we simply find the maximum observed TSC above, then record the
6139  * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
6140  * the adjustment will be applied. Note that we accumulate
6141  * adjustments, in case multiple suspend cycles happen before some VCPU
6142  * gets a chance to run again. In the event that no KVM threads get a
6143  * chance to run, we will miss the entire elapsed period, as we'll have
6144  * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
6145  * loose cycle time. This isn't too big a deal, since the loss will be
6146  * uniform across all VCPUs (not to mention the scenario is extremely
6147  * unlikely). It is possible that a second hibernate recovery happens
6148  * much faster than a first, causing the observed TSC here to be
6149  * smaller; this would require additional padding adjustment, which is
6150  * why we set last_host_tsc to the local tsc observed here.
6151  *
6152  * N.B. - this code below runs only on platforms with reliable TSC,
6153  * as that is the only way backwards_tsc is set above. Also note
6154  * that this runs for ALL vcpus, which is not a bug; all VCPUs should
6155  * have the same delta_cyc adjustment applied if backwards_tsc
6156  * is detected. Note further, this adjustment is only done once,
6157  * as we reset last_host_tsc on all VCPUs to stop this from being
6158  * called multiple times (one for each physical CPU bringup).
6159  *
6160  * Platforms with unreliable TSCs don't have to deal with this, they
6161  * will be compensated by the logic in vcpu_load, which sets the TSC to
6162  * catchup mode. This will catchup all VCPUs to real time, but cannot
6163  * guarantee that they stay in perfect synchronization.
6164  */
6165  if (backwards_tsc) {
6166  u64 delta_cyc = max_tsc - local_tsc;
6168  kvm_for_each_vcpu(i, vcpu, kvm) {
6169  vcpu->arch.tsc_offset_adjustment += delta_cyc;
6170  vcpu->arch.last_host_tsc = local_tsc;
6171  }
6172 
6173  /*
6174  * We have to disable TSC offset matching.. if you were
6175  * booting a VM while issuing an S4 host suspend....
6176  * you may have some problem. Solving this issue is
6177  * left as an exercise to the reader.
6178  */
6179  kvm->arch.last_tsc_nsec = 0;
6180  kvm->arch.last_tsc_write = 0;
6181  }
6182 
6183  }
6184  return 0;
6185 }
6186 
6187 void kvm_arch_hardware_disable(void *garbage)
6188 {
6189  kvm_x86_ops->hardware_disable(garbage);
6190  drop_user_return_notifiers(garbage);
6191 }
6192 
6194 {
6195  return kvm_x86_ops->hardware_setup();
6196 }
6197 
6199 {
6200  kvm_x86_ops->hardware_unsetup();
6201 }
6202 
6204 {
6205  kvm_x86_ops->check_processor_compatibility(rtn);
6206 }
6207 
6208 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
6209 {
6210  return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
6211 }
6212 
6214 
6215 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6216 {
6217  struct page *page;
6218  struct kvm *kvm;
6219  int r;
6220 
6221  BUG_ON(vcpu->kvm == NULL);
6222  kvm = vcpu->kvm;
6223 
6224  vcpu->arch.emulate_ctxt.ops = &emulate_ops;
6225  if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
6226  vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6227  else
6228  vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
6229 
6230  page = alloc_page(GFP_KERNEL | __GFP_ZERO);
6231  if (!page) {
6232  r = -ENOMEM;
6233  goto fail;
6234  }
6235  vcpu->arch.pio_data = page_address(page);
6236 
6237  kvm_set_tsc_khz(vcpu, max_tsc_khz);
6238 
6239  r = kvm_mmu_create(vcpu);
6240  if (r < 0)
6241  goto fail_free_pio_data;
6242 
6243  if (irqchip_in_kernel(kvm)) {
6244  r = kvm_create_lapic(vcpu);
6245  if (r < 0)
6246  goto fail_mmu_destroy;
6247  } else
6248  static_key_slow_inc(&kvm_no_apic_vcpu);
6249 
6250  vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
6251  GFP_KERNEL);
6252  if (!vcpu->arch.mce_banks) {
6253  r = -ENOMEM;
6254  goto fail_free_lapic;
6255  }
6256  vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
6257 
6258  if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
6259  goto fail_free_mce_banks;
6260 
6261  kvm_async_pf_hash_reset(vcpu);
6262  kvm_pmu_init(vcpu);
6263 
6264  return 0;
6265 fail_free_mce_banks:
6266  kfree(vcpu->arch.mce_banks);
6267 fail_free_lapic:
6268  kvm_free_lapic(vcpu);
6269 fail_mmu_destroy:
6270  kvm_mmu_destroy(vcpu);
6271 fail_free_pio_data:
6272  free_page((unsigned long)vcpu->arch.pio_data);
6273 fail:
6274  return r;
6275 }
6276 
6277 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6278 {
6279  int idx;
6280 
6281  kvm_pmu_destroy(vcpu);
6282  kfree(vcpu->arch.mce_banks);
6283  kvm_free_lapic(vcpu);
6284  idx = srcu_read_lock(&vcpu->kvm->srcu);
6285  kvm_mmu_destroy(vcpu);
6286  srcu_read_unlock(&vcpu->kvm->srcu, idx);
6287  free_page((unsigned long)vcpu->arch.pio_data);
6288  if (!irqchip_in_kernel(vcpu->kvm))
6289  static_key_slow_dec(&kvm_no_apic_vcpu);
6290 }
6291 
6292 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
6293 {
6294  if (type)
6295  return -EINVAL;
6296 
6297  INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6298  INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6299 
6300  /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6301  set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6302  /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
6304  &kvm->arch.irq_sources_bitmap);
6305 
6306  raw_spin_lock_init(&kvm->arch.tsc_write_lock);
6307  mutex_init(&kvm->arch.apic_map_lock);
6308 
6309  return 0;
6310 }
6311 
6312 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
6313 {
6314  int r;
6315  r = vcpu_load(vcpu);
6316  BUG_ON(r);
6317  kvm_mmu_unload(vcpu);
6318  vcpu_put(vcpu);
6319 }
6320 
6321 static void kvm_free_vcpus(struct kvm *kvm)
6322 {
6323  unsigned int i;
6324  struct kvm_vcpu *vcpu;
6325 
6326  /*
6327  * Unpin any mmu pages first.
6328  */
6329  kvm_for_each_vcpu(i, vcpu, kvm) {
6331  kvm_unload_vcpu_mmu(vcpu);
6332  }
6333  kvm_for_each_vcpu(i, vcpu, kvm)
6334  kvm_arch_vcpu_free(vcpu);
6335 
6336  mutex_lock(&kvm->lock);
6337  for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
6338  kvm->vcpus[i] = NULL;
6339 
6340  atomic_set(&kvm->online_vcpus, 0);
6341  mutex_unlock(&kvm->lock);
6342 }
6343 
6345 {
6347  kvm_free_pit(kvm);
6348 }
6349 
6350 void kvm_arch_destroy_vm(struct kvm *kvm)
6351 {
6352  kvm_iommu_unmap_guest(kvm);
6353  kfree(kvm->arch.vpic);
6354  kfree(kvm->arch.vioapic);
6355  kvm_free_vcpus(kvm);
6356  if (kvm->arch.apic_access_page)
6357  put_page(kvm->arch.apic_access_page);
6358  if (kvm->arch.ept_identity_pagetable)
6359  put_page(kvm->arch.ept_identity_pagetable);
6360  kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
6361 }
6362 
6364  struct kvm_memory_slot *dont)
6365 {
6366  int i;
6367 
6368  for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6369  if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
6370  kvm_kvfree(free->arch.rmap[i]);
6371  free->arch.rmap[i] = NULL;
6372  }
6373  if (i == 0)
6374  continue;
6375 
6376  if (!dont || free->arch.lpage_info[i - 1] !=
6377  dont->arch.lpage_info[i - 1]) {
6378  kvm_kvfree(free->arch.lpage_info[i - 1]);
6379  free->arch.lpage_info[i - 1] = NULL;
6380  }
6381  }
6382 }
6383 
6384 int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
6385 {
6386  int i;
6387 
6388  for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6389  unsigned long ugfn;
6390  int lpages;
6391  int level = i + 1;
6392 
6393  lpages = gfn_to_index(slot->base_gfn + npages - 1,
6394  slot->base_gfn, level) + 1;
6395 
6396  slot->arch.rmap[i] =
6397  kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
6398  if (!slot->arch.rmap[i])
6399  goto out_free;
6400  if (i == 0)
6401  continue;
6402 
6403  slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
6404  sizeof(*slot->arch.lpage_info[i - 1]));
6405  if (!slot->arch.lpage_info[i - 1])
6406  goto out_free;
6407 
6408  if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
6409  slot->arch.lpage_info[i - 1][0].write_count = 1;
6410  if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
6411  slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
6412  ugfn = slot->userspace_addr >> PAGE_SHIFT;
6413  /*
6414  * If the gfn and userspace address are not aligned wrt each
6415  * other, or if explicitly asked to, disable large page
6416  * support for this slot
6417  */
6418  if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
6420  unsigned long j;
6421 
6422  for (j = 0; j < lpages; ++j)
6423  slot->arch.lpage_info[i - 1][j].write_count = 1;
6424  }
6425  }
6426 
6427  return 0;
6428 
6429 out_free:
6430  for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6431  kvm_kvfree(slot->arch.rmap[i]);
6432  slot->arch.rmap[i] = NULL;
6433  if (i == 0)
6434  continue;
6435 
6436  kvm_kvfree(slot->arch.lpage_info[i - 1]);
6437  slot->arch.lpage_info[i - 1] = NULL;
6438  }
6439  return -ENOMEM;
6440 }
6441 
6443  struct kvm_memory_slot *memslot,
6444  struct kvm_memory_slot old,
6446  int user_alloc)
6447 {
6448  int npages = memslot->npages;
6449  int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
6450 
6451  /* Prevent internal slot pages from being moved by fork()/COW. */
6452  if (memslot->id >= KVM_MEMORY_SLOTS)
6453  map_flags = MAP_SHARED | MAP_ANONYMOUS;
6454 
6455  /*To keep backward compatibility with older userspace,
6456  *x86 needs to handle !user_alloc case.
6457  */
6458  if (!user_alloc) {
6459  if (npages && !old.npages) {
6460  unsigned long userspace_addr;
6461 
6462  userspace_addr = vm_mmap(NULL, 0,
6463  npages * PAGE_SIZE,
6465  map_flags,
6466  0);
6467 
6468  if (IS_ERR((void *)userspace_addr))
6469  return PTR_ERR((void *)userspace_addr);
6470 
6471  memslot->userspace_addr = userspace_addr;
6472  }
6473  }
6474 
6475 
6476  return 0;
6477 }
6478 
6479 void kvm_arch_commit_memory_region(struct kvm *kvm,
6481  struct kvm_memory_slot old,
6482  int user_alloc)
6483 {
6484 
6485  int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT;
6486 
6487  if (!user_alloc && !old.user_alloc && old.npages && !npages) {
6488  int ret;
6489 
6490  ret = vm_munmap(old.userspace_addr,
6491  old.npages * PAGE_SIZE);
6492  if (ret < 0)
6494  "kvm_vm_ioctl_set_memory_region: "
6495  "failed to munmap memory\n");
6496  }
6497 
6498  if (!kvm->arch.n_requested_mmu_pages)
6499  nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
6500 
6501  spin_lock(&kvm->mmu_lock);
6502  if (nr_mmu_pages)
6503  kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
6505  spin_unlock(&kvm->mmu_lock);
6506  /*
6507  * If memory slot is created, or moved, we need to clear all
6508  * mmio sptes.
6509  */
6510  if (npages && old.base_gfn != mem->guest_phys_addr >> PAGE_SHIFT) {
6511  kvm_mmu_zap_all(kvm);
6513  }
6514 }
6515 
6516 void kvm_arch_flush_shadow_all(struct kvm *kvm)
6517 {
6518  kvm_mmu_zap_all(kvm);
6520 }
6521 
6522 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
6523  struct kvm_memory_slot *slot)
6524 {
6526 }
6527 
6529 {
6530  return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6531  !vcpu->arch.apf.halted)
6532  || !list_empty_careful(&vcpu->async_pf.done)
6533  || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
6534  || atomic_read(&vcpu->arch.nmi_queued) ||
6535  (kvm_arch_interrupt_allowed(vcpu) &&
6536  kvm_cpu_has_interrupt(vcpu));
6537 }
6538 
6540 {
6541  return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
6542 }
6543 
6545 {
6546  return kvm_x86_ops->interrupt_allowed(vcpu);
6547 }
6548 
6549 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
6550 {
6551  unsigned long current_rip = kvm_rip_read(vcpu) +
6552  get_segment_base(vcpu, VCPU_SREG_CS);
6553 
6554  return current_rip == linear_rip;
6555 }
6557 
6558 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
6559 {
6560  unsigned long rflags;
6561 
6562  rflags = kvm_x86_ops->get_rflags(vcpu);
6564  rflags &= ~X86_EFLAGS_TF;
6565  return rflags;
6566 }
6568 
6569 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
6570 {
6571  if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
6572  kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
6573  rflags |= X86_EFLAGS_TF;
6574  kvm_x86_ops->set_rflags(vcpu, rflags);
6575  kvm_make_request(KVM_REQ_EVENT, vcpu);
6576 }
6578 
6579 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
6580 {
6581  int r;
6582 
6583  if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
6584  is_error_page(work->page))
6585  return;
6586 
6587  r = kvm_mmu_reload(vcpu);
6588  if (unlikely(r))
6589  return;
6590 
6591  if (!vcpu->arch.mmu.direct_map &&
6592  work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
6593  return;
6594 
6595  vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
6596 }
6597 
6598 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
6599 {
6600  return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
6601 }
6602 
6603 static inline u32 kvm_async_pf_next_probe(u32 key)
6604 {
6605  return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
6606 }
6607 
6608 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6609 {
6610  u32 key = kvm_async_pf_hash_fn(gfn);
6611 
6612  while (vcpu->arch.apf.gfns[key] != ~0)
6613  key = kvm_async_pf_next_probe(key);
6614 
6615  vcpu->arch.apf.gfns[key] = gfn;
6616 }
6617 
6618 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
6619 {
6620  int i;
6621  u32 key = kvm_async_pf_hash_fn(gfn);
6622 
6623  for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
6624  (vcpu->arch.apf.gfns[key] != gfn &&
6625  vcpu->arch.apf.gfns[key] != ~0); i++)
6626  key = kvm_async_pf_next_probe(key);
6627 
6628  return key;
6629 }
6630 
6631 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6632 {
6633  return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
6634 }
6635 
6636 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6637 {
6638  u32 i, j, k;
6639 
6640  i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
6641  while (true) {
6642  vcpu->arch.apf.gfns[i] = ~0;
6643  do {
6644  j = kvm_async_pf_next_probe(j);
6645  if (vcpu->arch.apf.gfns[j] == ~0)
6646  return;
6647  k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
6648  /*
6649  * k lies cyclically in ]i,j]
6650  * | i.k.j |
6651  * |....j i.k.| or |.k..j i...|
6652  */
6653  } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
6654  vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
6655  i = j;
6656  }
6657 }
6658 
6659 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
6660 {
6661 
6662  return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
6663  sizeof(val));
6664 }
6665 
6667  struct kvm_async_pf *work)
6668 {
6669  struct x86_exception fault;
6670 
6671  trace_kvm_async_pf_not_present(work->arch.token, work->gva);
6672  kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
6673 
6674  if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
6675  (vcpu->arch.apf.send_user_only &&
6676  kvm_x86_ops->get_cpl(vcpu) == 0))
6677  kvm_make_request(KVM_REQ_APF_HALT, vcpu);
6678  else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
6679  fault.vector = PF_VECTOR;
6680  fault.error_code_valid = true;
6681  fault.error_code = 0;
6682  fault.nested_page_fault = false;
6683  fault.address = work->arch.token;
6684  kvm_inject_page_fault(vcpu, &fault);
6685  }
6686 }
6687 
6689  struct kvm_async_pf *work)
6690 {
6691  struct x86_exception fault;
6692 
6693  trace_kvm_async_pf_ready(work->arch.token, work->gva);
6694  if (is_error_page(work->page))
6695  work->arch.token = ~0; /* broadcast wakeup */
6696  else
6697  kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
6698 
6699  if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
6700  !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
6701  fault.vector = PF_VECTOR;
6702  fault.error_code_valid = true;
6703  fault.error_code = 0;
6704  fault.nested_page_fault = false;
6705  fault.address = work->arch.token;
6706  kvm_inject_page_fault(vcpu, &fault);
6707  }
6708  vcpu->arch.apf.halted = false;
6709  vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6710 }
6711 
6713 {
6714  if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
6715  return true;
6716  else
6717  return !kvm_event_needs_reinjection(vcpu) &&
6718  kvm_x86_ops->interrupt_allowed(vcpu);
6719 }
6720 
6722 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
6726 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
6727 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
6728 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
6729 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
6730 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
6731 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
6732 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);