MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isinfcard Structured version   Visualization version   Unicode version

Theorem isinfcard 8915
Description: Two ways to express the property of being a transfinite cardinal. (Contributed by NM, 9-Nov-2003.)
Assertion
Ref Expression
isinfcard  |-  ( ( om  C_  A  /\  ( card `  A )  =  A )  <->  A  e.  ran  aleph )

Proof of Theorem isinfcard
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 alephfnon 8888 . . 3  |-  aleph  Fn  On
2 fvelrnb 6243 . . 3  |-  ( aleph  Fn  On  ->  ( A  e.  ran  aleph 
<->  E. x  e.  On  ( aleph `  x )  =  A ) )
31, 2ax-mp 5 . 2  |-  ( A  e.  ran  aleph  <->  E. x  e.  On  ( aleph `  x
)  =  A )
4 alephgeom 8905 . . . . . . 7  |-  ( x  e.  On  <->  om  C_  ( aleph `  x ) )
54biimpi 206 . . . . . 6  |-  ( x  e.  On  ->  om  C_  ( aleph `  x ) )
6 sseq2 3627 . . . . . 6  |-  ( A  =  ( aleph `  x
)  ->  ( om  C_  A  <->  om  C_  ( aleph `  x ) ) )
75, 6syl5ibrcom 237 . . . . 5  |-  ( x  e.  On  ->  ( A  =  ( aleph `  x )  ->  om  C_  A
) )
87rexlimiv 3027 . . . 4  |-  ( E. x  e.  On  A  =  ( aleph `  x
)  ->  om  C_  A
)
98pm4.71ri 665 . . 3  |-  ( E. x  e.  On  A  =  ( aleph `  x
)  <->  ( om  C_  A  /\  E. x  e.  On  A  =  ( aleph `  x ) ) )
10 eqcom 2629 . . . 4  |-  ( (
aleph `  x )  =  A  <->  A  =  ( aleph `  x ) )
1110rexbii 3041 . . 3  |-  ( E. x  e.  On  ( aleph `  x )  =  A  <->  E. x  e.  On  A  =  ( aleph `  x ) )
12 cardalephex 8913 . . . 4  |-  ( om  C_  A  ->  ( (
card `  A )  =  A  <->  E. x  e.  On  A  =  ( aleph `  x ) ) )
1312pm5.32i 669 . . 3  |-  ( ( om  C_  A  /\  ( card `  A )  =  A )  <->  ( om  C_  A  /\  E. x  e.  On  A  =  (
aleph `  x ) ) )
149, 11, 133bitr4i 292 . 2  |-  ( E. x  e.  On  ( aleph `  x )  =  A  <->  ( om  C_  A  /\  ( card `  A
)  =  A ) )
153, 14bitr2i 265 1  |-  ( ( om  C_  A  /\  ( card `  A )  =  A )  <->  A  e.  ran  aleph )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913    C_ wss 3574   ran crn 5115   Oncon0 5723    Fn wfn 5883   ` cfv 5888   omcom 7065   cardccrd 8761   alephcale 8762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-oi 8415  df-har 8463  df-card 8765  df-aleph 8766
This theorem is referenced by:  iscard3  8916  alephinit  8918  cardinfima  8920  alephiso  8921  alephsson  8923  alephfp  8931
  Copyright terms: Public domain W3C validator