MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alginv Structured version   Visualization version   Unicode version

Theorem alginv 15288
Description: If  I is an invariant of  F, its value is unchanged after any number of iterations of  F. (Contributed by Paul Chapman, 31-Mar-2011.)
Hypotheses
Ref Expression
alginv.1  |-  R  =  seq 0 ( ( F  o.  1st ) ,  ( NN0  X.  { A } ) )
alginv.2  |-  F : S
--> S
alginv.3  |-  I  Fn  S
alginv.4  |-  ( x  e.  S  ->  (
I `  ( F `  x ) )  =  ( I `  x
) )
Assertion
Ref Expression
alginv  |-  ( ( A  e.  S  /\  K  e.  NN0 )  -> 
( I `  ( R `  K )
)  =  ( I `
 ( R ` 
0 ) ) )
Distinct variable groups:    x, F    x, I    x, R    x, S
Allowed substitution hints:    A( x)    K( x)

Proof of Theorem alginv
Dummy variables  z 
k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . . . 6  |-  ( z  =  0  ->  ( R `  z )  =  ( R ` 
0 ) )
21fveq2d 6195 . . . . 5  |-  ( z  =  0  ->  (
I `  ( R `  z ) )  =  ( I `  ( R `  0 )
) )
32eqeq1d 2624 . . . 4  |-  ( z  =  0  ->  (
( I `  ( R `  z )
)  =  ( I `
 ( R ` 
0 ) )  <->  ( I `  ( R `  0
) )  =  ( I `  ( R `
 0 ) ) ) )
43imbi2d 330 . . 3  |-  ( z  =  0  ->  (
( A  e.  S  ->  ( I `  ( R `  z )
)  =  ( I `
 ( R ` 
0 ) ) )  <-> 
( A  e.  S  ->  ( I `  ( R `  0 )
)  =  ( I `
 ( R ` 
0 ) ) ) ) )
5 fveq2 6191 . . . . . 6  |-  ( z  =  k  ->  ( R `  z )  =  ( R `  k ) )
65fveq2d 6195 . . . . 5  |-  ( z  =  k  ->  (
I `  ( R `  z ) )  =  ( I `  ( R `  k )
) )
76eqeq1d 2624 . . . 4  |-  ( z  =  k  ->  (
( I `  ( R `  z )
)  =  ( I `
 ( R ` 
0 ) )  <->  ( I `  ( R `  k
) )  =  ( I `  ( R `
 0 ) ) ) )
87imbi2d 330 . . 3  |-  ( z  =  k  ->  (
( A  e.  S  ->  ( I `  ( R `  z )
)  =  ( I `
 ( R ` 
0 ) ) )  <-> 
( A  e.  S  ->  ( I `  ( R `  k )
)  =  ( I `
 ( R ` 
0 ) ) ) ) )
9 fveq2 6191 . . . . . 6  |-  ( z  =  ( k  +  1 )  ->  ( R `  z )  =  ( R `  ( k  +  1 ) ) )
109fveq2d 6195 . . . . 5  |-  ( z  =  ( k  +  1 )  ->  (
I `  ( R `  z ) )  =  ( I `  ( R `  ( k  +  1 ) ) ) )
1110eqeq1d 2624 . . . 4  |-  ( z  =  ( k  +  1 )  ->  (
( I `  ( R `  z )
)  =  ( I `
 ( R ` 
0 ) )  <->  ( I `  ( R `  (
k  +  1 ) ) )  =  ( I `  ( R `
 0 ) ) ) )
1211imbi2d 330 . . 3  |-  ( z  =  ( k  +  1 )  ->  (
( A  e.  S  ->  ( I `  ( R `  z )
)  =  ( I `
 ( R ` 
0 ) ) )  <-> 
( A  e.  S  ->  ( I `  ( R `  ( k  +  1 ) ) )  =  ( I `
 ( R ` 
0 ) ) ) ) )
13 fveq2 6191 . . . . . 6  |-  ( z  =  K  ->  ( R `  z )  =  ( R `  K ) )
1413fveq2d 6195 . . . . 5  |-  ( z  =  K  ->  (
I `  ( R `  z ) )  =  ( I `  ( R `  K )
) )
1514eqeq1d 2624 . . . 4  |-  ( z  =  K  ->  (
( I `  ( R `  z )
)  =  ( I `
 ( R ` 
0 ) )  <->  ( I `  ( R `  K
) )  =  ( I `  ( R `
 0 ) ) ) )
1615imbi2d 330 . . 3  |-  ( z  =  K  ->  (
( A  e.  S  ->  ( I `  ( R `  z )
)  =  ( I `
 ( R ` 
0 ) ) )  <-> 
( A  e.  S  ->  ( I `  ( R `  K )
)  =  ( I `
 ( R ` 
0 ) ) ) ) )
17 eqidd 2623 . . 3  |-  ( A  e.  S  ->  (
I `  ( R `  0 ) )  =  ( I `  ( R `  0 ) ) )
18 nn0uz 11722 . . . . . . . . . 10  |-  NN0  =  ( ZZ>= `  0 )
19 alginv.1 . . . . . . . . . 10  |-  R  =  seq 0 ( ( F  o.  1st ) ,  ( NN0  X.  { A } ) )
20 0zd 11389 . . . . . . . . . 10  |-  ( A  e.  S  ->  0  e.  ZZ )
21 id 22 . . . . . . . . . 10  |-  ( A  e.  S  ->  A  e.  S )
22 alginv.2 . . . . . . . . . . 11  |-  F : S
--> S
2322a1i 11 . . . . . . . . . 10  |-  ( A  e.  S  ->  F : S --> S )
2418, 19, 20, 21, 23algrp1 15287 . . . . . . . . 9  |-  ( ( A  e.  S  /\  k  e.  NN0 )  -> 
( R `  (
k  +  1 ) )  =  ( F `
 ( R `  k ) ) )
2524fveq2d 6195 . . . . . . . 8  |-  ( ( A  e.  S  /\  k  e.  NN0 )  -> 
( I `  ( R `  ( k  +  1 ) ) )  =  ( I `
 ( F `  ( R `  k ) ) ) )
2618, 19, 20, 21, 23algrf 15286 . . . . . . . . . 10  |-  ( A  e.  S  ->  R : NN0 --> S )
2726ffvelrnda 6359 . . . . . . . . 9  |-  ( ( A  e.  S  /\  k  e.  NN0 )  -> 
( R `  k
)  e.  S )
28 fveq2 6191 . . . . . . . . . . . 12  |-  ( x  =  ( R `  k )  ->  ( F `  x )  =  ( F `  ( R `  k ) ) )
2928fveq2d 6195 . . . . . . . . . . 11  |-  ( x  =  ( R `  k )  ->  (
I `  ( F `  x ) )  =  ( I `  ( F `  ( R `  k ) ) ) )
30 fveq2 6191 . . . . . . . . . . 11  |-  ( x  =  ( R `  k )  ->  (
I `  x )  =  ( I `  ( R `  k ) ) )
3129, 30eqeq12d 2637 . . . . . . . . . 10  |-  ( x  =  ( R `  k )  ->  (
( I `  ( F `  x )
)  =  ( I `
 x )  <->  ( I `  ( F `  ( R `  k )
) )  =  ( I `  ( R `
 k ) ) ) )
32 alginv.4 . . . . . . . . . 10  |-  ( x  e.  S  ->  (
I `  ( F `  x ) )  =  ( I `  x
) )
3331, 32vtoclga 3272 . . . . . . . . 9  |-  ( ( R `  k )  e.  S  ->  (
I `  ( F `  ( R `  k
) ) )  =  ( I `  ( R `  k )
) )
3427, 33syl 17 . . . . . . . 8  |-  ( ( A  e.  S  /\  k  e.  NN0 )  -> 
( I `  ( F `  ( R `  k ) ) )  =  ( I `  ( R `  k ) ) )
3525, 34eqtrd 2656 . . . . . . 7  |-  ( ( A  e.  S  /\  k  e.  NN0 )  -> 
( I `  ( R `  ( k  +  1 ) ) )  =  ( I `
 ( R `  k ) ) )
3635eqeq1d 2624 . . . . . 6  |-  ( ( A  e.  S  /\  k  e.  NN0 )  -> 
( ( I `  ( R `  ( k  +  1 ) ) )  =  ( I `
 ( R ` 
0 ) )  <->  ( I `  ( R `  k
) )  =  ( I `  ( R `
 0 ) ) ) )
3736biimprd 238 . . . . 5  |-  ( ( A  e.  S  /\  k  e.  NN0 )  -> 
( ( I `  ( R `  k ) )  =  ( I `
 ( R ` 
0 ) )  -> 
( I `  ( R `  ( k  +  1 ) ) )  =  ( I `
 ( R ` 
0 ) ) ) )
3837expcom 451 . . . 4  |-  ( k  e.  NN0  ->  ( A  e.  S  ->  (
( I `  ( R `  k )
)  =  ( I `
 ( R ` 
0 ) )  -> 
( I `  ( R `  ( k  +  1 ) ) )  =  ( I `
 ( R ` 
0 ) ) ) ) )
3938a2d 29 . . 3  |-  ( k  e.  NN0  ->  ( ( A  e.  S  -> 
( I `  ( R `  k )
)  =  ( I `
 ( R ` 
0 ) ) )  ->  ( A  e.  S  ->  ( I `  ( R `  (
k  +  1 ) ) )  =  ( I `  ( R `
 0 ) ) ) ) )
404, 8, 12, 16, 17, 39nn0ind 11472 . 2  |-  ( K  e.  NN0  ->  ( A  e.  S  ->  (
I `  ( R `  K ) )  =  ( I `  ( R `  0 )
) ) )
4140impcom 446 1  |-  ( ( A  e.  S  /\  K  e.  NN0 )  -> 
( I `  ( R `  K )
)  =  ( I `
 ( R ` 
0 ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {csn 4177    X. cxp 5112    o. ccom 5118    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   1stc1st 7166   0cc0 9936   1c1 9937    + caddc 9939   NN0cn0 11292    seqcseq 12801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802
This theorem is referenced by:  eucalg  15300
  Copyright terms: Public domain W3C validator