MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfidm Structured version   Visualization version   Unicode version

Theorem cfidm 9097
Description: The cofinality function is idempotent. (Contributed by Mario Carneiro, 7-Mar-2013.) (Revised by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
cfidm  |-  ( cf `  ( cf `  A
) )  =  ( cf `  A )

Proof of Theorem cfidm
Dummy variables  f  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cfle 9076 . . . 4  |-  ( cf `  ( cf `  A
) )  C_  ( cf `  A )
21a1i 11 . . 3  |-  ( A  e.  On  ->  ( cf `  ( cf `  A
) )  C_  ( cf `  A ) )
3 cfsmo 9093 . . . 4  |-  ( A  e.  On  ->  E. f
( f : ( cf `  A ) --> A  /\  Smo  f  /\  A. x  e.  A  E. y  e.  ( cf `  A ) x 
C_  ( f `  y ) ) )
4 cfon 9077 . . . . 5  |-  ( cf `  A )  e.  On
5 cfcoflem 9094 . . . . 5  |-  ( ( A  e.  On  /\  ( cf `  A )  e.  On )  -> 
( E. f ( f : ( cf `  A ) --> A  /\  Smo  f  /\  A. x  e.  A  E. y  e.  ( cf `  A
) x  C_  (
f `  y )
)  ->  ( cf `  A )  C_  ( cf `  ( cf `  A
) ) ) )
64, 5mpan2 707 . . . 4  |-  ( A  e.  On  ->  ( E. f ( f : ( cf `  A
) --> A  /\  Smo  f  /\  A. x  e.  A  E. y  e.  ( cf `  A
) x  C_  (
f `  y )
)  ->  ( cf `  A )  C_  ( cf `  ( cf `  A
) ) ) )
73, 6mpd 15 . . 3  |-  ( A  e.  On  ->  ( cf `  A )  C_  ( cf `  ( cf `  A ) ) )
82, 7eqssd 3620 . 2  |-  ( A  e.  On  ->  ( cf `  ( cf `  A
) )  =  ( cf `  A ) )
9 cf0 9073 . . 3  |-  ( cf `  (/) )  =  (/)
10 cff 9070 . . . . . . 7  |-  cf : On
--> On
1110fdmi 6052 . . . . . 6  |-  dom  cf  =  On
1211eleq2i 2693 . . . . 5  |-  ( A  e.  dom  cf  <->  A  e.  On )
13 ndmfv 6218 . . . . 5  |-  ( -.  A  e.  dom  cf  ->  ( cf `  A
)  =  (/) )
1412, 13sylnbir 321 . . . 4  |-  ( -.  A  e.  On  ->  ( cf `  A )  =  (/) )
1514fveq2d 6195 . . 3  |-  ( -.  A  e.  On  ->  ( cf `  ( cf `  A ) )  =  ( cf `  (/) ) )
169, 15, 143eqtr4a 2682 . 2  |-  ( -.  A  e.  On  ->  ( cf `  ( cf `  A ) )  =  ( cf `  A
) )
178, 16pm2.61i 176 1  |-  ( cf `  ( cf `  A
) )  =  ( cf `  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   A.wral 2912   E.wrex 2913    C_ wss 3574   (/)c0 3915   dom cdm 5114   Oncon0 5723   -->wf 5884   ` cfv 5888   Smo wsmo 7442   cfccf 8763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-smo 7443  df-recs 7468  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-card 8765  df-cf 8767  df-acn 8768
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator