MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfsmo Structured version   Visualization version   Unicode version

Theorem cfsmo 9093
Description: The map in cff1 9080 can be assumed to be a strictly monotone ordinal function without loss of generality. (Contributed by Mario Carneiro, 28-Feb-2013.)
Assertion
Ref Expression
cfsmo  |-  ( A  e.  On  ->  E. f
( f : ( cf `  A ) --> A  /\  Smo  f  /\  A. z  e.  A  E. w  e.  ( cf `  A ) z 
C_  ( f `  w ) ) )
Distinct variable group:    A, f, w, z

Proof of Theorem cfsmo
Dummy variables  m  h  x  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmeq 5324 . . . . 5  |-  ( x  =  z  ->  dom  x  =  dom  z )
21fveq2d 6195 . . . 4  |-  ( x  =  z  ->  (
h `  dom  x )  =  ( h `  dom  z ) )
3 fveq2 6191 . . . . . . 7  |-  ( n  =  m  ->  (
x `  n )  =  ( x `  m ) )
4 suceq 5790 . . . . . . 7  |-  ( ( x `  n )  =  ( x `  m )  ->  suc  ( x `  n
)  =  suc  (
x `  m )
)
53, 4syl 17 . . . . . 6  |-  ( n  =  m  ->  suc  ( x `  n
)  =  suc  (
x `  m )
)
65cbviunv 4559 . . . . 5  |-  U_ n  e.  dom  x  suc  (
x `  n )  =  U_ m  e.  dom  x  suc  ( x `  m )
7 fveq1 6190 . . . . . . 7  |-  ( x  =  z  ->  (
x `  m )  =  ( z `  m ) )
8 suceq 5790 . . . . . . 7  |-  ( ( x `  m )  =  ( z `  m )  ->  suc  ( x `  m
)  =  suc  (
z `  m )
)
97, 8syl 17 . . . . . 6  |-  ( x  =  z  ->  suc  ( x `  m
)  =  suc  (
z `  m )
)
101, 9iuneq12d 4546 . . . . 5  |-  ( x  =  z  ->  U_ m  e.  dom  x  suc  (
x `  m )  =  U_ m  e.  dom  z  suc  ( z `  m ) )
116, 10syl5eq 2668 . . . 4  |-  ( x  =  z  ->  U_ n  e.  dom  x  suc  (
x `  n )  =  U_ m  e.  dom  z  suc  ( z `  m ) )
122, 11uneq12d 3768 . . 3  |-  ( x  =  z  ->  (
( h `  dom  x )  u.  U_ n  e.  dom  x  suc  ( x `  n
) )  =  ( ( h `  dom  z )  u.  U_ m  e.  dom  z  suc  ( z `  m
) ) )
1312cbvmptv 4750 . 2  |-  ( x  e.  _V  |->  ( ( h `  dom  x
)  u.  U_ n  e.  dom  x  suc  (
x `  n )
) )  =  ( z  e.  _V  |->  ( ( h `  dom  z )  u.  U_ m  e.  dom  z  suc  ( z `  m
) ) )
14 eqid 2622 . 2  |-  (recs ( ( x  e.  _V  |->  ( ( h `  dom  x )  u.  U_ n  e.  dom  x  suc  ( x `  n
) ) ) )  |`  ( cf `  A
) )  =  (recs ( ( x  e. 
_V  |->  ( ( h `
 dom  x )  u.  U_ n  e.  dom  x  suc  ( x `  n ) ) ) )  |`  ( cf `  A ) )
1513, 14cfsmolem 9092 1  |-  ( A  e.  On  ->  E. f
( f : ( cf `  A ) --> A  /\  Smo  f  /\  A. z  e.  A  E. w  e.  ( cf `  A ) z 
C_  ( f `  w ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    u. cun 3572    C_ wss 3574   U_ciun 4520    |-> cmpt 4729   dom cdm 5114    |` cres 5116   Oncon0 5723   suc csuc 5725   -->wf 5884   ` cfv 5888   Smo wsmo 7442  recscrecs 7467   cfccf 8763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-smo 7443  df-recs 7468  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-card 8765  df-cf 8767  df-acn 8768
This theorem is referenced by:  cfidm  9097  pwcfsdom  9405
  Copyright terms: Public domain W3C validator