Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cncfcompt Structured version   Visualization version   Unicode version

Theorem cncfcompt 40096
Description: Composition of continuous functions. A generalization of cncfmpt1f 22716 to arbitrary domains. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
cncfcompt.bcn  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  ( A -cn-> C ) )
cncfcompt.f  |-  ( ph  ->  F  e.  ( C
-cn-> D ) )
Assertion
Ref Expression
cncfcompt  |-  ( ph  ->  ( x  e.  A  |->  ( F `  B
) )  e.  ( A -cn-> D ) )
Distinct variable groups:    x, A    x, C    x, D    x, F    ph, x
Allowed substitution hint:    B( x)

Proof of Theorem cncfcompt
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 cncfcompt.f . . . . . 6  |-  ( ph  ->  F  e.  ( C
-cn-> D ) )
2 cncff 22696 . . . . . 6  |-  ( F  e.  ( C -cn-> D )  ->  F : C
--> D )
31, 2syl 17 . . . . 5  |-  ( ph  ->  F : C --> D )
43adantr 481 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  F : C --> D )
5 cncfcompt.bcn . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  ( A -cn-> C ) )
6 cncff 22696 . . . . . 6  |-  ( ( x  e.  A  |->  B )  e.  ( A
-cn-> C )  ->  (
x  e.  A  |->  B ) : A --> C )
75, 6syl 17 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  B ) : A --> C )
87mptex2 6384 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  C )
94, 8ffvelrnd 6360 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  B )  e.  D )
10 eqid 2622 . . 3  |-  ( x  e.  A  |->  ( F `
 B ) )  =  ( x  e.  A  |->  ( F `  B ) )
119, 10fmptd 6385 . 2  |-  ( ph  ->  ( x  e.  A  |->  ( F `  B
) ) : A --> D )
12 cncfrss2 22695 . . . 4  |-  ( F  e.  ( C -cn-> D )  ->  D  C_  CC )
131, 12syl 17 . . 3  |-  ( ph  ->  D  C_  CC )
14 eqidd 2623 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B ) )
153feqmptd 6249 . . . . 5  |-  ( ph  ->  F  =  ( y  e.  C  |->  ( F `
 y ) ) )
16 fveq2 6191 . . . . 5  |-  ( y  =  B  ->  ( F `  y )  =  ( F `  B ) )
178, 14, 15, 16fmptco 6396 . . . 4  |-  ( ph  ->  ( F  o.  (
x  e.  A  |->  B ) )  =  ( x  e.  A  |->  ( F `  B ) ) )
18 ssid 3624 . . . . . . 7  |-  CC  C_  CC
19 cncfss 22702 . . . . . . 7  |-  ( ( D  C_  CC  /\  CC  C_  CC )  ->  ( C -cn-> D )  C_  ( C -cn-> CC ) )
2013, 18, 19sylancl 694 . . . . . 6  |-  ( ph  ->  ( C -cn-> D ) 
C_  ( C -cn-> CC ) )
2120, 1sseldd 3604 . . . . 5  |-  ( ph  ->  F  e.  ( C
-cn-> CC ) )
225, 21cncfco 22710 . . . 4  |-  ( ph  ->  ( F  o.  (
x  e.  A  |->  B ) )  e.  ( A -cn-> CC ) )
2317, 22eqeltrrd 2702 . . 3  |-  ( ph  ->  ( x  e.  A  |->  ( F `  B
) )  e.  ( A -cn-> CC ) )
24 cncffvrn 22701 . . 3  |-  ( ( D  C_  CC  /\  (
x  e.  A  |->  ( F `  B ) )  e.  ( A
-cn-> CC ) )  -> 
( ( x  e.  A  |->  ( F `  B ) )  e.  ( A -cn-> D )  <-> 
( x  e.  A  |->  ( F `  B
) ) : A --> D ) )
2513, 23, 24syl2anc 693 . 2  |-  ( ph  ->  ( ( x  e.  A  |->  ( F `  B ) )  e.  ( A -cn-> D )  <-> 
( x  e.  A  |->  ( F `  B
) ) : A --> D ) )
2611, 25mpbird 247 1  |-  ( ph  ->  ( x  e.  A  |->  ( F `  B
) )  e.  ( A -cn-> D ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    e. wcel 1990    C_ wss 3574    |-> cmpt 4729    o. ccom 5118   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   -cn->ccncf 22679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-2 11079  df-cj 13839  df-re 13840  df-im 13841  df-abs 13976  df-cncf 22681
This theorem is referenced by:  itgsbtaddcnst  40198  fourierdlem23  40347  fourierdlem83  40406  fourierdlem101  40424
  Copyright terms: Public domain W3C validator