Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgsbtaddcnst Structured version   Visualization version   Unicode version

Theorem itgsbtaddcnst 40198
Description: Integral substitution, adding a constant to the function's argument. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
itgsbtaddcnst.a  |-  ( ph  ->  A  e.  RR )
itgsbtaddcnst.b  |-  ( ph  ->  B  e.  RR )
itgsbtaddcnst.aleb  |-  ( ph  ->  A  <_  B )
itgsbtaddcnst.x  |-  ( ph  ->  X  e.  RR )
itgsbtaddcnst.f  |-  ( ph  ->  F  e.  ( ( A [,] B )
-cn-> CC ) )
Assertion
Ref Expression
itgsbtaddcnst  |-  ( ph  ->  S__ [ ( A  -  X )  -> 
( B  -  X
) ] ( F `
 ( X  +  s ) )  _d s  =  S__ [ A  ->  B ] ( F `  t )  _d t )
Distinct variable groups:    A, s,
t    B, s, t    F, s, t    X, s, t    ph, s, t

Proof of Theorem itgsbtaddcnst
StepHypRef Expression
1 itgsbtaddcnst.a . . 3  |-  ( ph  ->  A  e.  RR )
2 itgsbtaddcnst.b . . 3  |-  ( ph  ->  B  e.  RR )
3 itgsbtaddcnst.aleb . . 3  |-  ( ph  ->  A  <_  B )
41, 2iccssred 39727 . . . . . . . . 9  |-  ( ph  ->  ( A [,] B
)  C_  RR )
54sselda 3603 . . . . . . . 8  |-  ( (
ph  /\  t  e.  ( A [,] B ) )  ->  t  e.  RR )
65recnd 10068 . . . . . . 7  |-  ( (
ph  /\  t  e.  ( A [,] B ) )  ->  t  e.  CC )
7 itgsbtaddcnst.x . . . . . . . . 9  |-  ( ph  ->  X  e.  RR )
87recnd 10068 . . . . . . . 8  |-  ( ph  ->  X  e.  CC )
98adantr 481 . . . . . . 7  |-  ( (
ph  /\  t  e.  ( A [,] B ) )  ->  X  e.  CC )
106, 9negsubd 10398 . . . . . 6  |-  ( (
ph  /\  t  e.  ( A [,] B ) )  ->  ( t  +  -u X )  =  ( t  -  X
) )
1110eqcomd 2628 . . . . 5  |-  ( (
ph  /\  t  e.  ( A [,] B ) )  ->  ( t  -  X )  =  ( t  +  -u X
) )
1211mpteq2dva 4744 . . . 4  |-  ( ph  ->  ( t  e.  ( A [,] B ) 
|->  ( t  -  X
) )  =  ( t  e.  ( A [,] B )  |->  ( t  +  -u X
) ) )
131adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  ( A [,] B ) )  ->  A  e.  RR )
147adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  ( A [,] B ) )  ->  X  e.  RR )
1513, 14resubcld 10458 . . . . . . . 8  |-  ( (
ph  /\  t  e.  ( A [,] B ) )  ->  ( A  -  X )  e.  RR )
162adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  ( A [,] B ) )  ->  B  e.  RR )
1716, 14resubcld 10458 . . . . . . . 8  |-  ( (
ph  /\  t  e.  ( A [,] B ) )  ->  ( B  -  X )  e.  RR )
185, 14resubcld 10458 . . . . . . . 8  |-  ( (
ph  /\  t  e.  ( A [,] B ) )  ->  ( t  -  X )  e.  RR )
19 simpr 477 . . . . . . . . . . 11  |-  ( (
ph  /\  t  e.  ( A [,] B ) )  ->  t  e.  ( A [,] B ) )
201, 2jca 554 . . . . . . . . . . . . 13  |-  ( ph  ->  ( A  e.  RR  /\  B  e.  RR ) )
2120adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  t  e.  ( A [,] B ) )  ->  ( A  e.  RR  /\  B  e.  RR ) )
22 elicc2 12238 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( t  e.  ( A [,] B )  <-> 
( t  e.  RR  /\  A  <_  t  /\  t  <_  B ) ) )
2321, 22syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  t  e.  ( A [,] B ) )  ->  ( t  e.  ( A [,] B
)  <->  ( t  e.  RR  /\  A  <_ 
t  /\  t  <_  B ) ) )
2419, 23mpbid 222 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  ( A [,] B ) )  ->  ( t  e.  RR  /\  A  <_ 
t  /\  t  <_  B ) )
2524simp2d 1074 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  ( A [,] B ) )  ->  A  <_  t )
2613, 5, 14, 25lesub1dd 10643 . . . . . . . 8  |-  ( (
ph  /\  t  e.  ( A [,] B ) )  ->  ( A  -  X )  <_  (
t  -  X ) )
2724simp3d 1075 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  ( A [,] B ) )  ->  t  <_  B )
285, 16, 14, 27lesub1dd 10643 . . . . . . . 8  |-  ( (
ph  /\  t  e.  ( A [,] B ) )  ->  ( t  -  X )  <_  ( B  -  X )
)
2915, 17, 18, 26, 28eliccd 39726 . . . . . . 7  |-  ( (
ph  /\  t  e.  ( A [,] B ) )  ->  ( t  -  X )  e.  ( ( A  -  X
) [,] ( B  -  X ) ) )
30 eqid 2622 . . . . . . 7  |-  ( t  e.  ( A [,] B )  |->  ( t  -  X ) )  =  ( t  e.  ( A [,] B
)  |->  ( t  -  X ) )
3129, 30fmptd 6385 . . . . . 6  |-  ( ph  ->  ( t  e.  ( A [,] B ) 
|->  ( t  -  X
) ) : ( A [,] B ) --> ( ( A  -  X ) [,] ( B  -  X )
) )
3212, 31feq1dd 39347 . . . . 5  |-  ( ph  ->  ( t  e.  ( A [,] B ) 
|->  ( t  +  -u X ) ) : ( A [,] B
) --> ( ( A  -  X ) [,] ( B  -  X
) ) )
331, 7resubcld 10458 . . . . . . . 8  |-  ( ph  ->  ( A  -  X
)  e.  RR )
342, 7resubcld 10458 . . . . . . . 8  |-  ( ph  ->  ( B  -  X
)  e.  RR )
3533, 34iccssred 39727 . . . . . . 7  |-  ( ph  ->  ( ( A  -  X ) [,] ( B  -  X )
)  C_  RR )
36 ax-resscn 9993 . . . . . . 7  |-  RR  C_  CC
3735, 36syl6ss 3615 . . . . . 6  |-  ( ph  ->  ( ( A  -  X ) [,] ( B  -  X )
)  C_  CC )
384, 36syl6ss 3615 . . . . . . . . 9  |-  ( ph  ->  ( A [,] B
)  C_  CC )
3938resmptd 5452 . . . . . . . 8  |-  ( ph  ->  ( ( t  e.  CC  |->  ( t  -  X ) )  |`  ( A [,] B ) )  =  ( t  e.  ( A [,] B )  |->  ( t  -  X ) ) )
40 ssid 3624 . . . . . . . . . . . . 13  |-  CC  C_  CC
41 cncfmptid 22715 . . . . . . . . . . . . 13  |-  ( ( CC  C_  CC  /\  CC  C_  CC )  ->  (
t  e.  CC  |->  t )  e.  ( CC
-cn-> CC ) )
4240, 40, 41mp2an 708 . . . . . . . . . . . 12  |-  ( t  e.  CC  |->  t )  e.  ( CC -cn-> CC )
4342a1i 11 . . . . . . . . . . 11  |-  ( X  e.  CC  ->  (
t  e.  CC  |->  t )  e.  ( CC
-cn-> CC ) )
4440a1i 11 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  CC  C_  CC )
45 id 22 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  X  e.  CC )
4644, 45, 44constcncfg 40084 . . . . . . . . . . 11  |-  ( X  e.  CC  ->  (
t  e.  CC  |->  X )  e.  ( CC
-cn-> CC ) )
4743, 46subcncf 40082 . . . . . . . . . 10  |-  ( X  e.  CC  ->  (
t  e.  CC  |->  ( t  -  X ) )  e.  ( CC
-cn-> CC ) )
488, 47syl 17 . . . . . . . . 9  |-  ( ph  ->  ( t  e.  CC  |->  ( t  -  X
) )  e.  ( CC -cn-> CC ) )
49 rescncf 22700 . . . . . . . . 9  |-  ( ( A [,] B ) 
C_  CC  ->  ( ( t  e.  CC  |->  ( t  -  X ) )  e.  ( CC
-cn-> CC )  ->  (
( t  e.  CC  |->  ( t  -  X
) )  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> CC ) ) )
5038, 48, 49sylc 65 . . . . . . . 8  |-  ( ph  ->  ( ( t  e.  CC  |->  ( t  -  X ) )  |`  ( A [,] B ) )  e.  ( ( A [,] B )
-cn-> CC ) )
5139, 50eqeltrrd 2702 . . . . . . 7  |-  ( ph  ->  ( t  e.  ( A [,] B ) 
|->  ( t  -  X
) )  e.  ( ( A [,] B
) -cn-> CC ) )
5212, 51eqeltrrd 2702 . . . . . 6  |-  ( ph  ->  ( t  e.  ( A [,] B ) 
|->  ( t  +  -u X ) )  e.  ( ( A [,] B ) -cn-> CC ) )
53 cncffvrn 22701 . . . . . 6  |-  ( ( ( ( A  -  X ) [,] ( B  -  X )
)  C_  CC  /\  (
t  e.  ( A [,] B )  |->  ( t  +  -u X
) )  e.  ( ( A [,] B
) -cn-> CC ) )  -> 
( ( t  e.  ( A [,] B
)  |->  ( t  + 
-u X ) )  e.  ( ( A [,] B ) -cn-> ( ( A  -  X
) [,] ( B  -  X ) ) )  <->  ( t  e.  ( A [,] B
)  |->  ( t  + 
-u X ) ) : ( A [,] B ) --> ( ( A  -  X ) [,] ( B  -  X ) ) ) )
5437, 52, 53syl2anc 693 . . . . 5  |-  ( ph  ->  ( ( t  e.  ( A [,] B
)  |->  ( t  + 
-u X ) )  e.  ( ( A [,] B ) -cn-> ( ( A  -  X
) [,] ( B  -  X ) ) )  <->  ( t  e.  ( A [,] B
)  |->  ( t  + 
-u X ) ) : ( A [,] B ) --> ( ( A  -  X ) [,] ( B  -  X ) ) ) )
5532, 54mpbird 247 . . . 4  |-  ( ph  ->  ( t  e.  ( A [,] B ) 
|->  ( t  +  -u X ) )  e.  ( ( A [,] B ) -cn-> ( ( A  -  X ) [,] ( B  -  X ) ) ) )
5612, 55eqeltrd 2701 . . 3  |-  ( ph  ->  ( t  e.  ( A [,] B ) 
|->  ( t  -  X
) )  e.  ( ( A [,] B
) -cn-> ( ( A  -  X ) [,] ( B  -  X
) ) ) )
57 eqid 2622 . . . . 5  |-  ( s  e.  CC  |->  ( X  +  s ) )  =  ( s  e.  CC  |->  ( X  +  s ) )
588adantr 481 . . . . . . . 8  |-  ( (
ph  /\  s  e.  CC )  ->  X  e.  CC )
59 simpr 477 . . . . . . . 8  |-  ( (
ph  /\  s  e.  CC )  ->  s  e.  CC )
6058, 59addcomd 10238 . . . . . . 7  |-  ( (
ph  /\  s  e.  CC )  ->  ( X  +  s )  =  ( s  +  X
) )
6160mpteq2dva 4744 . . . . . 6  |-  ( ph  ->  ( s  e.  CC  |->  ( X  +  s
) )  =  ( s  e.  CC  |->  ( s  +  X ) ) )
62 eqid 2622 . . . . . . . 8  |-  ( s  e.  CC  |->  ( s  +  X ) )  =  ( s  e.  CC  |->  ( s  +  X ) )
6362addccncf 22719 . . . . . . 7  |-  ( X  e.  CC  ->  (
s  e.  CC  |->  ( s  +  X ) )  e.  ( CC
-cn-> CC ) )
648, 63syl 17 . . . . . 6  |-  ( ph  ->  ( s  e.  CC  |->  ( s  +  X
) )  e.  ( CC -cn-> CC ) )
6561, 64eqeltrd 2701 . . . . 5  |-  ( ph  ->  ( s  e.  CC  |->  ( X  +  s
) )  e.  ( CC -cn-> CC ) )
661adantr 481 . . . . . 6  |-  ( (
ph  /\  s  e.  ( ( A  -  X ) [,] ( B  -  X )
) )  ->  A  e.  RR )
672adantr 481 . . . . . 6  |-  ( (
ph  /\  s  e.  ( ( A  -  X ) [,] ( B  -  X )
) )  ->  B  e.  RR )
687adantr 481 . . . . . . 7  |-  ( (
ph  /\  s  e.  ( ( A  -  X ) [,] ( B  -  X )
) )  ->  X  e.  RR )
6935sselda 3603 . . . . . . 7  |-  ( (
ph  /\  s  e.  ( ( A  -  X ) [,] ( B  -  X )
) )  ->  s  e.  RR )
7068, 69readdcld 10069 . . . . . 6  |-  ( (
ph  /\  s  e.  ( ( A  -  X ) [,] ( B  -  X )
) )  ->  ( X  +  s )  e.  RR )
71 simpr 477 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  ( ( A  -  X ) [,] ( B  -  X )
) )  ->  s  e.  ( ( A  -  X ) [,] ( B  -  X )
) )
7233adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  ( ( A  -  X ) [,] ( B  -  X )
) )  ->  ( A  -  X )  e.  RR )
7334adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  ( ( A  -  X ) [,] ( B  -  X )
) )  ->  ( B  -  X )  e.  RR )
74 elicc2 12238 . . . . . . . . . 10  |-  ( ( ( A  -  X
)  e.  RR  /\  ( B  -  X
)  e.  RR )  ->  ( s  e.  ( ( A  -  X ) [,] ( B  -  X )
)  <->  ( s  e.  RR  /\  ( A  -  X )  <_ 
s  /\  s  <_  ( B  -  X ) ) ) )
7572, 73, 74syl2anc 693 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  ( ( A  -  X ) [,] ( B  -  X )
) )  ->  (
s  e.  ( ( A  -  X ) [,] ( B  -  X ) )  <->  ( s  e.  RR  /\  ( A  -  X )  <_ 
s  /\  s  <_  ( B  -  X ) ) ) )
7671, 75mpbid 222 . . . . . . . 8  |-  ( (
ph  /\  s  e.  ( ( A  -  X ) [,] ( B  -  X )
) )  ->  (
s  e.  RR  /\  ( A  -  X
)  <_  s  /\  s  <_  ( B  -  X ) ) )
7776simp2d 1074 . . . . . . 7  |-  ( (
ph  /\  s  e.  ( ( A  -  X ) [,] ( B  -  X )
) )  ->  ( A  -  X )  <_  s )
7866, 68, 69lesubadd2d 10626 . . . . . . 7  |-  ( (
ph  /\  s  e.  ( ( A  -  X ) [,] ( B  -  X )
) )  ->  (
( A  -  X
)  <_  s  <->  A  <_  ( X  +  s ) ) )
7977, 78mpbid 222 . . . . . 6  |-  ( (
ph  /\  s  e.  ( ( A  -  X ) [,] ( B  -  X )
) )  ->  A  <_  ( X  +  s ) )
8076simp3d 1075 . . . . . . 7  |-  ( (
ph  /\  s  e.  ( ( A  -  X ) [,] ( B  -  X )
) )  ->  s  <_  ( B  -  X
) )
8168, 69, 67leaddsub2d 10629 . . . . . . 7  |-  ( (
ph  /\  s  e.  ( ( A  -  X ) [,] ( B  -  X )
) )  ->  (
( X  +  s )  <_  B  <->  s  <_  ( B  -  X ) ) )
8280, 81mpbird 247 . . . . . 6  |-  ( (
ph  /\  s  e.  ( ( A  -  X ) [,] ( B  -  X )
) )  ->  ( X  +  s )  <_  B )
8366, 67, 70, 79, 82eliccd 39726 . . . . 5  |-  ( (
ph  /\  s  e.  ( ( A  -  X ) [,] ( B  -  X )
) )  ->  ( X  +  s )  e.  ( A [,] B
) )
8457, 65, 37, 38, 83cncfmptssg 40083 . . . 4  |-  ( ph  ->  ( s  e.  ( ( A  -  X
) [,] ( B  -  X ) ) 
|->  ( X  +  s ) )  e.  ( ( ( A  -  X ) [,] ( B  -  X )
) -cn-> ( A [,] B ) ) )
85 itgsbtaddcnst.f . . . 4  |-  ( ph  ->  F  e.  ( ( A [,] B )
-cn-> CC ) )
8684, 85cncfcompt 40096 . . 3  |-  ( ph  ->  ( s  e.  ( ( A  -  X
) [,] ( B  -  X ) ) 
|->  ( F `  ( X  +  s )
) )  e.  ( ( ( A  -  X ) [,] ( B  -  X )
) -cn-> CC ) )
87 ax-1cn 9994 . . . . . 6  |-  1  e.  CC
88 ioosscn 39716 . . . . . 6  |-  ( A (,) B )  C_  CC
89 cncfmptc 22714 . . . . . 6  |-  ( ( 1  e.  CC  /\  ( A (,) B ) 
C_  CC  /\  CC  C_  CC )  ->  ( t  e.  ( A (,) B )  |->  1 )  e.  ( ( A (,) B ) -cn-> CC ) )
9087, 88, 40, 89mp3an 1424 . . . . 5  |-  ( t  e.  ( A (,) B )  |->  1 )  e.  ( ( A (,) B ) -cn-> CC )
9190a1i 11 . . . 4  |-  ( ph  ->  ( t  e.  ( A (,) B ) 
|->  1 )  e.  ( ( A (,) B
) -cn-> CC ) )
92 fconstmpt 5163 . . . . 5  |-  ( ( A (,) B )  X.  { 1 } )  =  ( t  e.  ( A (,) B )  |->  1 )
93 ioombl 23333 . . . . . . 7  |-  ( A (,) B )  e. 
dom  vol
9493a1i 11 . . . . . 6  |-  ( ph  ->  ( A (,) B
)  e.  dom  vol )
95 volioo 23337 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  ( vol `  ( A (,) B ) )  =  ( B  -  A
) )
961, 2, 3, 95syl3anc 1326 . . . . . . 7  |-  ( ph  ->  ( vol `  ( A (,) B ) )  =  ( B  -  A ) )
972, 1resubcld 10458 . . . . . . 7  |-  ( ph  ->  ( B  -  A
)  e.  RR )
9896, 97eqeltrd 2701 . . . . . 6  |-  ( ph  ->  ( vol `  ( A (,) B ) )  e.  RR )
99 1cnd 10056 . . . . . 6  |-  ( ph  ->  1  e.  CC )
100 iblconst 23584 . . . . . 6  |-  ( ( ( A (,) B
)  e.  dom  vol  /\  ( vol `  ( A (,) B ) )  e.  RR  /\  1  e.  CC )  ->  (
( A (,) B
)  X.  { 1 } )  e.  L^1 )
10194, 98, 99, 100syl3anc 1326 . . . . 5  |-  ( ph  ->  ( ( A (,) B )  X.  {
1 } )  e.  L^1 )
10292, 101syl5eqelr 2706 . . . 4  |-  ( ph  ->  ( t  e.  ( A (,) B ) 
|->  1 )  e.  L^1 )
10391, 102elind 3798 . . 3  |-  ( ph  ->  ( t  e.  ( A (,) B ) 
|->  1 )  e.  ( ( ( A (,) B ) -cn-> CC )  i^i  L^1 ) )
10436a1i 11 . . . . 5  |-  ( ph  ->  RR  C_  CC )
10518recnd 10068 . . . . 5  |-  ( (
ph  /\  t  e.  ( A [,] B ) )  ->  ( t  -  X )  e.  CC )
106 eqid 2622 . . . . . 6  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
107106tgioo2 22606 . . . . 5  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
108 iccntr 22624 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  =  ( A (,) B
) )
10920, 108syl 17 . . . . 5  |-  ( ph  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  =  ( A (,) B
) )
110104, 4, 105, 107, 106, 109dvmptntr 23734 . . . 4  |-  ( ph  ->  ( RR  _D  (
t  e.  ( A [,] B )  |->  ( t  -  X ) ) )  =  ( RR  _D  ( t  e.  ( A (,) B )  |->  ( t  -  X ) ) ) )
111 reelprrecn 10028 . . . . . 6  |-  RR  e.  { RR ,  CC }
112111a1i 11 . . . . 5  |-  ( ph  ->  RR  e.  { RR ,  CC } )
113 ioossre 12235 . . . . . . . 8  |-  ( A (,) B )  C_  RR
114113sseli 3599 . . . . . . 7  |-  ( t  e.  ( A (,) B )  ->  t  e.  RR )
115114adantl 482 . . . . . 6  |-  ( (
ph  /\  t  e.  ( A (,) B ) )  ->  t  e.  RR )
116115recnd 10068 . . . . 5  |-  ( (
ph  /\  t  e.  ( A (,) B ) )  ->  t  e.  CC )
117 1cnd 10056 . . . . 5  |-  ( (
ph  /\  t  e.  ( A (,) B ) )  ->  1  e.  CC )
118104sselda 3603 . . . . . 6  |-  ( (
ph  /\  t  e.  RR )  ->  t  e.  CC )
119 1cnd 10056 . . . . . 6  |-  ( (
ph  /\  t  e.  RR )  ->  1  e.  CC )
120112dvmptid 23720 . . . . . 6  |-  ( ph  ->  ( RR  _D  (
t  e.  RR  |->  t ) )  =  ( t  e.  RR  |->  1 ) )
121113a1i 11 . . . . . 6  |-  ( ph  ->  ( A (,) B
)  C_  RR )
122 iooretop 22569 . . . . . . 7  |-  ( A (,) B )  e.  ( topGen `  ran  (,) )
123122a1i 11 . . . . . 6  |-  ( ph  ->  ( A (,) B
)  e.  ( topGen ` 
ran  (,) ) )
124112, 118, 119, 120, 121, 107, 106, 123dvmptres 23726 . . . . 5  |-  ( ph  ->  ( RR  _D  (
t  e.  ( A (,) B )  |->  t ) )  =  ( t  e.  ( A (,) B )  |->  1 ) )
1258adantr 481 . . . . 5  |-  ( (
ph  /\  t  e.  ( A (,) B ) )  ->  X  e.  CC )
126 0cnd 10033 . . . . 5  |-  ( (
ph  /\  t  e.  ( A (,) B ) )  ->  0  e.  CC )
1278adantr 481 . . . . . 6  |-  ( (
ph  /\  t  e.  RR )  ->  X  e.  CC )
128 0cnd 10033 . . . . . 6  |-  ( (
ph  /\  t  e.  RR )  ->  0  e.  CC )
129112, 8dvmptc 23721 . . . . . 6  |-  ( ph  ->  ( RR  _D  (
t  e.  RR  |->  X ) )  =  ( t  e.  RR  |->  0 ) )
130112, 127, 128, 129, 121, 107, 106, 123dvmptres 23726 . . . . 5  |-  ( ph  ->  ( RR  _D  (
t  e.  ( A (,) B )  |->  X ) )  =  ( t  e.  ( A (,) B )  |->  0 ) )
131112, 116, 117, 124, 125, 126, 130dvmptsub 23730 . . . 4  |-  ( ph  ->  ( RR  _D  (
t  e.  ( A (,) B )  |->  ( t  -  X ) ) )  =  ( t  e.  ( A (,) B )  |->  ( 1  -  0 ) ) )
132117subid1d 10381 . . . . 5  |-  ( (
ph  /\  t  e.  ( A (,) B ) )  ->  ( 1  -  0 )  =  1 )
133132mpteq2dva 4744 . . . 4  |-  ( ph  ->  ( t  e.  ( A (,) B ) 
|->  ( 1  -  0 ) )  =  ( t  e.  ( A (,) B )  |->  1 ) )
134110, 131, 1333eqtrd 2660 . . 3  |-  ( ph  ->  ( RR  _D  (
t  e.  ( A [,] B )  |->  ( t  -  X ) ) )  =  ( t  e.  ( A (,) B )  |->  1 ) )
135 oveq2 6658 . . . 4  |-  ( s  =  ( t  -  X )  ->  ( X  +  s )  =  ( X  +  ( t  -  X
) ) )
136135fveq2d 6195 . . 3  |-  ( s  =  ( t  -  X )  ->  ( F `  ( X  +  s ) )  =  ( F `  ( X  +  (
t  -  X ) ) ) )
137 oveq1 6657 . . 3  |-  ( t  =  A  ->  (
t  -  X )  =  ( A  -  X ) )
138 oveq1 6657 . . 3  |-  ( t  =  B  ->  (
t  -  X )  =  ( B  -  X ) )
1391, 2, 3, 56, 86, 103, 134, 136, 137, 138, 33, 34itgsubsticc 40192 . 2  |-  ( ph  ->  S__ [ ( A  -  X )  -> 
( B  -  X
) ] ( F `
 ( X  +  s ) )  _d s  =  S__ [ A  ->  B ] ( ( F `  ( X  +  ( t  -  X ) ) )  x.  1 )  _d t )
140125, 116pncan3d 10395 . . . . . 6  |-  ( (
ph  /\  t  e.  ( A (,) B ) )  ->  ( X  +  ( t  -  X ) )  =  t )
141140fveq2d 6195 . . . . 5  |-  ( (
ph  /\  t  e.  ( A (,) B ) )  ->  ( F `  ( X  +  ( t  -  X ) ) )  =  ( F `  t ) )
142141oveq1d 6665 . . . 4  |-  ( (
ph  /\  t  e.  ( A (,) B ) )  ->  ( ( F `  ( X  +  ( t  -  X ) ) )  x.  1 )  =  ( ( F `  t )  x.  1 ) )
143 cncff 22696 . . . . . . . 8  |-  ( F  e.  ( ( A [,] B ) -cn-> CC )  ->  F :
( A [,] B
) --> CC )
14485, 143syl 17 . . . . . . 7  |-  ( ph  ->  F : ( A [,] B ) --> CC )
145144adantr 481 . . . . . 6  |-  ( (
ph  /\  t  e.  ( A (,) B ) )  ->  F :
( A [,] B
) --> CC )
146 ioossicc 12259 . . . . . . . 8  |-  ( A (,) B )  C_  ( A [,] B )
147146sseli 3599 . . . . . . 7  |-  ( t  e.  ( A (,) B )  ->  t  e.  ( A [,] B
) )
148147adantl 482 . . . . . 6  |-  ( (
ph  /\  t  e.  ( A (,) B ) )  ->  t  e.  ( A [,] B ) )
149145, 148ffvelrnd 6360 . . . . 5  |-  ( (
ph  /\  t  e.  ( A (,) B ) )  ->  ( F `  t )  e.  CC )
150149mulid1d 10057 . . . 4  |-  ( (
ph  /\  t  e.  ( A (,) B ) )  ->  ( ( F `  t )  x.  1 )  =  ( F `  t ) )
151142, 150eqtrd 2656 . . 3  |-  ( (
ph  /\  t  e.  ( A (,) B ) )  ->  ( ( F `  ( X  +  ( t  -  X ) ) )  x.  1 )  =  ( F `  t
) )
1523, 151ditgeq3d 40180 . 2  |-  ( ph  ->  S__ [ A  ->  B ] ( ( F `
 ( X  +  ( t  -  X
) ) )  x.  1 )  _d t  =  S__ [ A  ->  B ] ( F `
 t )  _d t )
153139, 152eqtrd 2656 1  |-  ( ph  ->  S__ [ ( A  -  X )  -> 
( B  -  X
) ] ( F `
 ( X  +  s ) )  _d s  =  S__ [ A  ->  B ] ( F `  t )  _d t )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    C_ wss 3574   {csn 4177   {cpr 4179   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   dom cdm 5114   ran crn 5115    |` cres 5116   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    <_ cle 10075    - cmin 10266   -ucneg 10267   (,)cioo 12175   [,]cicc 12178   TopOpenctopn 16082   topGenctg 16098  ℂfldccnfld 19746   intcnt 20821   -cn->ccncf 22679   volcvol 23232   L^1cibl 23386   S__cdit 23610    _D cdv 23627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389  df-itg2 23390  df-ibl 23391  df-itg 23392  df-0p 23437  df-ditg 23611  df-limc 23630  df-dv 23631
This theorem is referenced by:  fourierdlem82  40405
  Copyright terms: Public domain W3C validator