MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmcnp Structured version   Visualization version   Unicode version

Theorem lmcnp 21108
Description: The image of a convergent sequence under a continuous map is convergent to the image of the original point. (Contributed by Mario Carneiro, 3-May-2014.)
Hypotheses
Ref Expression
lmcnp.3  |-  ( ph  ->  F ( ~~> t `  J ) P )
lmcnp.4  |-  ( ph  ->  G  e.  ( ( J  CnP  K ) `
 P ) )
Assertion
Ref Expression
lmcnp  |-  ( ph  ->  ( G  o.  F
) ( ~~> t `  K ) ( G `
 P ) )

Proof of Theorem lmcnp
Dummy variables  j 
k  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmcnp.4 . . . . . 6  |-  ( ph  ->  G  e.  ( ( J  CnP  K ) `
 P ) )
2 eqid 2622 . . . . . . 7  |-  U. J  =  U. J
3 eqid 2622 . . . . . . 7  |-  U. K  =  U. K
42, 3cnpf 21051 . . . . . 6  |-  ( G  e.  ( ( J  CnP  K ) `  P )  ->  G : U. J --> U. K
)
51, 4syl 17 . . . . 5  |-  ( ph  ->  G : U. J --> U. K )
6 lmcnp.3 . . . . . . . . 9  |-  ( ph  ->  F ( ~~> t `  J ) P )
7 cnptop1 21046 . . . . . . . . . . . 12  |-  ( G  e.  ( ( J  CnP  K ) `  P )  ->  J  e.  Top )
81, 7syl 17 . . . . . . . . . . 11  |-  ( ph  ->  J  e.  Top )
92toptopon 20722 . . . . . . . . . . 11  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
108, 9sylib 208 . . . . . . . . . 10  |-  ( ph  ->  J  e.  (TopOn `  U. J ) )
11 nnuz 11723 . . . . . . . . . 10  |-  NN  =  ( ZZ>= `  1 )
12 1zzd 11408 . . . . . . . . . 10  |-  ( ph  ->  1  e.  ZZ )
1310, 11, 12lmbr2 21063 . . . . . . . . 9  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( U. J  ^pm  CC )  /\  P  e. 
U. J  /\  A. v  e.  J  ( P  e.  v  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  v ) ) ) ) )
146, 13mpbid 222 . . . . . . . 8  |-  ( ph  ->  ( F  e.  ( U. J  ^pm  CC )  /\  P  e.  U. J  /\  A. v  e.  J  ( P  e.  v  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  v ) ) ) )
1514simp1d 1073 . . . . . . 7  |-  ( ph  ->  F  e.  ( U. J  ^pm  CC ) )
16 uniexg 6955 . . . . . . . . 9  |-  ( J  e.  Top  ->  U. J  e.  _V )
178, 16syl 17 . . . . . . . 8  |-  ( ph  ->  U. J  e.  _V )
18 cnex 10017 . . . . . . . 8  |-  CC  e.  _V
19 elpm2g 7874 . . . . . . . 8  |-  ( ( U. J  e.  _V  /\  CC  e.  _V )  ->  ( F  e.  ( U. J  ^pm  CC ) 
<->  ( F : dom  F --> U. J  /\  dom  F 
C_  CC ) ) )
2017, 18, 19sylancl 694 . . . . . . 7  |-  ( ph  ->  ( F  e.  ( U. J  ^pm  CC ) 
<->  ( F : dom  F --> U. J  /\  dom  F 
C_  CC ) ) )
2115, 20mpbid 222 . . . . . 6  |-  ( ph  ->  ( F : dom  F --> U. J  /\  dom  F 
C_  CC ) )
2221simpld 475 . . . . 5  |-  ( ph  ->  F : dom  F --> U. J )
23 fco 6058 . . . . 5  |-  ( ( G : U. J --> U. K  /\  F : dom  F --> U. J )  -> 
( G  o.  F
) : dom  F --> U. K )
245, 22, 23syl2anc 693 . . . 4  |-  ( ph  ->  ( G  o.  F
) : dom  F --> U. K )
25 fdm 6051 . . . . . 6  |-  ( ( G  o.  F ) : dom  F --> U. K  ->  dom  ( G  o.  F )  =  dom  F )
2624, 25syl 17 . . . . 5  |-  ( ph  ->  dom  ( G  o.  F )  =  dom  F )
2726feq2d 6031 . . . 4  |-  ( ph  ->  ( ( G  o.  F ) : dom  ( G  o.  F
) --> U. K  <->  ( G  o.  F ) : dom  F --> U. K ) )
2824, 27mpbird 247 . . 3  |-  ( ph  ->  ( G  o.  F
) : dom  ( G  o.  F ) --> U. K )
2921simprd 479 . . . 4  |-  ( ph  ->  dom  F  C_  CC )
3026, 29eqsstrd 3639 . . 3  |-  ( ph  ->  dom  ( G  o.  F )  C_  CC )
31 cnptop2 21047 . . . . . 6  |-  ( G  e.  ( ( J  CnP  K ) `  P )  ->  K  e.  Top )
321, 31syl 17 . . . . 5  |-  ( ph  ->  K  e.  Top )
33 uniexg 6955 . . . . 5  |-  ( K  e.  Top  ->  U. K  e.  _V )
3432, 33syl 17 . . . 4  |-  ( ph  ->  U. K  e.  _V )
35 elpm2g 7874 . . . 4  |-  ( ( U. K  e.  _V  /\  CC  e.  _V )  ->  ( ( G  o.  F )  e.  ( U. K  ^pm  CC ) 
<->  ( ( G  o.  F ) : dom  ( G  o.  F
) --> U. K  /\  dom  ( G  o.  F
)  C_  CC )
) )
3634, 18, 35sylancl 694 . . 3  |-  ( ph  ->  ( ( G  o.  F )  e.  ( U. K  ^pm  CC ) 
<->  ( ( G  o.  F ) : dom  ( G  o.  F
) --> U. K  /\  dom  ( G  o.  F
)  C_  CC )
) )
3728, 30, 36mpbir2and 957 . 2  |-  ( ph  ->  ( G  o.  F
)  e.  ( U. K  ^pm  CC ) )
3814simp2d 1074 . . 3  |-  ( ph  ->  P  e.  U. J
)
395, 38ffvelrnd 6360 . 2  |-  ( ph  ->  ( G `  P
)  e.  U. K
)
4014simp3d 1075 . . . . . 6  |-  ( ph  ->  A. v  e.  J  ( P  e.  v  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  v ) ) )
4140adantr 481 . . . . 5  |-  ( (
ph  /\  ( u  e.  K  /\  ( G `  P )  e.  u ) )  ->  A. v  e.  J  ( P  e.  v  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  v ) ) )
42 cnpimaex 21060 . . . . . . 7  |-  ( ( G  e.  ( ( J  CnP  K ) `
 P )  /\  u  e.  K  /\  ( G `  P )  e.  u )  ->  E. v  e.  J  ( P  e.  v  /\  ( G " v
)  C_  u )
)
43423expb 1266 . . . . . 6  |-  ( ( G  e.  ( ( J  CnP  K ) `
 P )  /\  ( u  e.  K  /\  ( G `  P
)  e.  u ) )  ->  E. v  e.  J  ( P  e.  v  /\  ( G " v )  C_  u ) )
441, 43sylan 488 . . . . 5  |-  ( (
ph  /\  ( u  e.  K  /\  ( G `  P )  e.  u ) )  ->  E. v  e.  J  ( P  e.  v  /\  ( G " v
)  C_  u )
)
45 r19.29 3072 . . . . . . 7  |-  ( ( A. v  e.  J  ( P  e.  v  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  v ) )  /\  E. v  e.  J  ( P  e.  v  /\  ( G
" v )  C_  u ) )  ->  E. v  e.  J  ( ( P  e.  v  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  v ) )  /\  ( P  e.  v  /\  ( G " v ) 
C_  u ) ) )
46 pm3.45 879 . . . . . . . . 9  |-  ( ( P  e.  v  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  v ) )  ->  ( ( P  e.  v  /\  ( G " v )  C_  u )  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  v )  /\  ( G " v ) 
C_  u ) ) )
4746imp 445 . . . . . . . 8  |-  ( ( ( P  e.  v  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  v ) )  /\  ( P  e.  v  /\  ( G
" v )  C_  u ) )  -> 
( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  v )  /\  ( G
" v )  C_  u ) )
4847reximi 3011 . . . . . . 7  |-  ( E. v  e.  J  ( ( P  e.  v  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  v ) )  /\  ( P  e.  v  /\  ( G
" v )  C_  u ) )  ->  E. v  e.  J  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  v )  /\  ( G " v ) 
C_  u ) )
4945, 48syl 17 . . . . . 6  |-  ( ( A. v  e.  J  ( P  e.  v  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  v ) )  /\  E. v  e.  J  ( P  e.  v  /\  ( G
" v )  C_  u ) )  ->  E. v  e.  J  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  v )  /\  ( G " v ) 
C_  u ) )
505ad3antrrr 766 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( u  e.  K  /\  ( G `  P
)  e.  u ) )  /\  ( v  e.  J  /\  ( G " v )  C_  u ) )  /\  k  e.  dom  F )  ->  G : U. J
--> U. K )
51 ffn 6045 . . . . . . . . . . . . . . . . . 18  |-  ( G : U. J --> U. K  ->  G  Fn  U. J
)
5250, 51syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( u  e.  K  /\  ( G `  P
)  e.  u ) )  /\  ( v  e.  J  /\  ( G " v )  C_  u ) )  /\  k  e.  dom  F )  ->  G  Fn  U. J )
53 simplrl 800 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( u  e.  K  /\  ( G `  P
)  e.  u ) )  /\  ( v  e.  J  /\  ( G " v )  C_  u ) )  /\  k  e.  dom  F )  ->  v  e.  J
)
54 elssuni 4467 . . . . . . . . . . . . . . . . . 18  |-  ( v  e.  J  ->  v  C_ 
U. J )
5553, 54syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( u  e.  K  /\  ( G `  P
)  e.  u ) )  /\  ( v  e.  J  /\  ( G " v )  C_  u ) )  /\  k  e.  dom  F )  ->  v  C_  U. J
)
56 fnfvima 6496 . . . . . . . . . . . . . . . . . 18  |-  ( ( G  Fn  U. J  /\  v  C_  U. J  /\  ( F `  k
)  e.  v )  ->  ( G `  ( F `  k ) )  e.  ( G
" v ) )
57563expia 1267 . . . . . . . . . . . . . . . . 17  |-  ( ( G  Fn  U. J  /\  v  C_  U. J
)  ->  ( ( F `  k )  e.  v  ->  ( G `
 ( F `  k ) )  e.  ( G " v
) ) )
5852, 55, 57syl2anc 693 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( u  e.  K  /\  ( G `  P
)  e.  u ) )  /\  ( v  e.  J  /\  ( G " v )  C_  u ) )  /\  k  e.  dom  F )  ->  ( ( F `
 k )  e.  v  ->  ( G `  ( F `  k
) )  e.  ( G " v ) ) )
5922ad2antrr 762 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
u  e.  K  /\  ( G `  P )  e.  u ) )  /\  ( v  e.  J  /\  ( G
" v )  C_  u ) )  ->  F : dom  F --> U. J
)
60 fvco3 6275 . . . . . . . . . . . . . . . . . 18  |-  ( ( F : dom  F --> U. J  /\  k  e.  dom  F )  -> 
( ( G  o.  F ) `  k
)  =  ( G `
 ( F `  k ) ) )
6159, 60sylan 488 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( u  e.  K  /\  ( G `  P
)  e.  u ) )  /\  ( v  e.  J  /\  ( G " v )  C_  u ) )  /\  k  e.  dom  F )  ->  ( ( G  o.  F ) `  k )  =  ( G `  ( F `
 k ) ) )
6261eleq1d 2686 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( u  e.  K  /\  ( G `  P
)  e.  u ) )  /\  ( v  e.  J  /\  ( G " v )  C_  u ) )  /\  k  e.  dom  F )  ->  ( ( ( G  o.  F ) `
 k )  e.  ( G " v
)  <->  ( G `  ( F `  k ) )  e.  ( G
" v ) ) )
6358, 62sylibrd 249 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( u  e.  K  /\  ( G `  P
)  e.  u ) )  /\  ( v  e.  J  /\  ( G " v )  C_  u ) )  /\  k  e.  dom  F )  ->  ( ( F `
 k )  e.  v  ->  ( ( G  o.  F ) `  k )  e.  ( G " v ) ) )
64 simplrr 801 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( u  e.  K  /\  ( G `  P
)  e.  u ) )  /\  ( v  e.  J  /\  ( G " v )  C_  u ) )  /\  k  e.  dom  F )  ->  ( G "
v )  C_  u
)
6564sseld 3602 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( u  e.  K  /\  ( G `  P
)  e.  u ) )  /\  ( v  e.  J  /\  ( G " v )  C_  u ) )  /\  k  e.  dom  F )  ->  ( ( ( G  o.  F ) `
 k )  e.  ( G " v
)  ->  ( ( G  o.  F ) `  k )  e.  u
) )
6663, 65syld 47 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( u  e.  K  /\  ( G `  P
)  e.  u ) )  /\  ( v  e.  J  /\  ( G " v )  C_  u ) )  /\  k  e.  dom  F )  ->  ( ( F `
 k )  e.  v  ->  ( ( G  o.  F ) `  k )  e.  u
) )
67 simpr 477 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( u  e.  K  /\  ( G `  P
)  e.  u ) )  /\  ( v  e.  J  /\  ( G " v )  C_  u ) )  /\  k  e.  dom  F )  ->  k  e.  dom  F )
6826ad3antrrr 766 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( u  e.  K  /\  ( G `  P
)  e.  u ) )  /\  ( v  e.  J  /\  ( G " v )  C_  u ) )  /\  k  e.  dom  F )  ->  dom  ( G  o.  F )  =  dom  F )
6967, 68eleqtrrd 2704 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( u  e.  K  /\  ( G `  P
)  e.  u ) )  /\  ( v  e.  J  /\  ( G " v )  C_  u ) )  /\  k  e.  dom  F )  ->  k  e.  dom  ( G  o.  F
) )
7066, 69jctild 566 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( u  e.  K  /\  ( G `  P
)  e.  u ) )  /\  ( v  e.  J  /\  ( G " v )  C_  u ) )  /\  k  e.  dom  F )  ->  ( ( F `
 k )  e.  v  ->  ( k  e.  dom  ( G  o.  F )  /\  (
( G  o.  F
) `  k )  e.  u ) ) )
7170expimpd 629 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
u  e.  K  /\  ( G `  P )  e.  u ) )  /\  ( v  e.  J  /\  ( G
" v )  C_  u ) )  -> 
( ( k  e. 
dom  F  /\  ( F `  k )  e.  v )  ->  (
k  e.  dom  ( G  o.  F )  /\  ( ( G  o.  F ) `  k
)  e.  u ) ) )
7271ralimdv 2963 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
u  e.  K  /\  ( G `  P )  e.  u ) )  /\  ( v  e.  J  /\  ( G
" v )  C_  u ) )  -> 
( A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  v )  ->  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  ( G  o.  F
)  /\  ( ( G  o.  F ) `  k )  e.  u
) ) )
7372reximdv 3016 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
u  e.  K  /\  ( G `  P )  e.  u ) )  /\  ( v  e.  J  /\  ( G
" v )  C_  u ) )  -> 
( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  v )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  ( G  o.  F
)  /\  ( ( G  o.  F ) `  k )  e.  u
) ) )
7473expr 643 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  K  /\  ( G `  P )  e.  u ) )  /\  v  e.  J
)  ->  ( ( G " v )  C_  u  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  v )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  ( G  o.  F
)  /\  ( ( G  o.  F ) `  k )  e.  u
) ) ) )
7574com23 86 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  K  /\  ( G `  P )  e.  u ) )  /\  v  e.  J
)  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  v )  ->  ( ( G " v )  C_  u  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  ( G  o.  F )  /\  ( ( G  o.  F ) `  k
)  e.  u ) ) ) )
7675impd 447 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  K  /\  ( G `  P )  e.  u ) )  /\  v  e.  J
)  ->  ( ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  v )  /\  ( G " v ) 
C_  u )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  ( G  o.  F )  /\  ( ( G  o.  F ) `  k
)  e.  u ) ) )
7776rexlimdva 3031 . . . . . 6  |-  ( (
ph  /\  ( u  e.  K  /\  ( G `  P )  e.  u ) )  -> 
( E. v  e.  J  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  v )  /\  ( G
" v )  C_  u )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  ( G  o.  F
)  /\  ( ( G  o.  F ) `  k )  e.  u
) ) )
7849, 77syl5 34 . . . . 5  |-  ( (
ph  /\  ( u  e.  K  /\  ( G `  P )  e.  u ) )  -> 
( ( A. v  e.  J  ( P  e.  v  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  v ) )  /\  E. v  e.  J  ( P  e.  v  /\  ( G " v ) 
C_  u ) )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  ( G  o.  F )  /\  ( ( G  o.  F ) `  k
)  e.  u ) ) )
7941, 44, 78mp2and 715 . . . 4  |-  ( (
ph  /\  ( u  e.  K  /\  ( G `  P )  e.  u ) )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  ( G  o.  F )  /\  ( ( G  o.  F ) `  k
)  e.  u ) )
8079expr 643 . . 3  |-  ( (
ph  /\  u  e.  K )  ->  (
( G `  P
)  e.  u  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  ( G  o.  F )  /\  ( ( G  o.  F ) `  k
)  e.  u ) ) )
8180ralrimiva 2966 . 2  |-  ( ph  ->  A. u  e.  K  ( ( G `  P )  e.  u  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  ( G  o.  F )  /\  ( ( G  o.  F ) `  k
)  e.  u ) ) )
823toptopon 20722 . . . 4  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
8332, 82sylib 208 . . 3  |-  ( ph  ->  K  e.  (TopOn `  U. K ) )
8483, 11, 12lmbr2 21063 . 2  |-  ( ph  ->  ( ( G  o.  F ) ( ~~> t `  K ) ( G `
 P )  <->  ( ( G  o.  F )  e.  ( U. K  ^pm  CC )  /\  ( G `
 P )  e. 
U. K  /\  A. u  e.  K  (
( G `  P
)  e.  u  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  ( G  o.  F )  /\  ( ( G  o.  F ) `  k
)  e.  u ) ) ) ) )
8537, 39, 81, 84mpbir3and 1245 1  |-  ( ph  ->  ( G  o.  F
) ( ~~> t `  K ) ( G `
 P ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    C_ wss 3574   U.cuni 4436   class class class wbr 4653   dom cdm 5114   "cima 5117    o. ccom 5118    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^pm cpm 7858   CCcc 9934   1c1 9937   NNcn 11020   ZZ>=cuz 11687   Topctop 20698  TopOnctopon 20715    CnP ccnp 21029   ~~> tclm 21030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-z 11378  df-uz 11688  df-top 20699  df-topon 20716  df-cnp 21032  df-lm 21033
This theorem is referenced by:  lmcn  21109  1stccnp  21265
  Copyright terms: Public domain W3C validator