MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  connima Structured version   Visualization version   Unicode version

Theorem connima 21228
Description: The image of a connected set is connected. (Contributed by Mario Carneiro, 7-Jul-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
connima.x  |-  X  = 
U. J
connima.f  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
connima.a  |-  ( ph  ->  A  C_  X )
connima.c  |-  ( ph  ->  ( Jt  A )  e. Conn )
Assertion
Ref Expression
connima  |-  ( ph  ->  ( Kt  ( F " A ) )  e. Conn
)

Proof of Theorem connima
StepHypRef Expression
1 connima.c . 2  |-  ( ph  ->  ( Jt  A )  e. Conn )
2 connima.f . . . . . 6  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
3 connima.x . . . . . . 7  |-  X  = 
U. J
4 eqid 2622 . . . . . . 7  |-  U. K  =  U. K
53, 4cnf 21050 . . . . . 6  |-  ( F  e.  ( J  Cn  K )  ->  F : X --> U. K )
62, 5syl 17 . . . . 5  |-  ( ph  ->  F : X --> U. K
)
7 ffun 6048 . . . . 5  |-  ( F : X --> U. K  ->  Fun  F )
86, 7syl 17 . . . 4  |-  ( ph  ->  Fun  F )
9 connima.a . . . . 5  |-  ( ph  ->  A  C_  X )
10 fdm 6051 . . . . . 6  |-  ( F : X --> U. K  ->  dom  F  =  X )
116, 10syl 17 . . . . 5  |-  ( ph  ->  dom  F  =  X )
129, 11sseqtr4d 3642 . . . 4  |-  ( ph  ->  A  C_  dom  F )
13 fores 6124 . . . 4  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( F  |`  A ) : A -onto-> ( F
" A ) )
148, 12, 13syl2anc 693 . . 3  |-  ( ph  ->  ( F  |`  A ) : A -onto-> ( F
" A ) )
15 cntop2 21045 . . . . . 6  |-  ( F  e.  ( J  Cn  K )  ->  K  e.  Top )
162, 15syl 17 . . . . 5  |-  ( ph  ->  K  e.  Top )
17 imassrn 5477 . . . . . 6  |-  ( F
" A )  C_  ran  F
18 frn 6053 . . . . . . 7  |-  ( F : X --> U. K  ->  ran  F  C_  U. K
)
196, 18syl 17 . . . . . 6  |-  ( ph  ->  ran  F  C_  U. K
)
2017, 19syl5ss 3614 . . . . 5  |-  ( ph  ->  ( F " A
)  C_  U. K )
214restuni 20966 . . . . 5  |-  ( ( K  e.  Top  /\  ( F " A ) 
C_  U. K )  -> 
( F " A
)  =  U. ( Kt  ( F " A ) ) )
2216, 20, 21syl2anc 693 . . . 4  |-  ( ph  ->  ( F " A
)  =  U. ( Kt  ( F " A ) ) )
23 foeq3 6113 . . . 4  |-  ( ( F " A )  =  U. ( Kt  ( F " A ) )  ->  ( ( F  |`  A ) : A -onto-> ( F " A )  <->  ( F  |`  A ) : A -onto-> U. ( Kt  ( F " A ) ) ) )
2422, 23syl 17 . . 3  |-  ( ph  ->  ( ( F  |`  A ) : A -onto->
( F " A
)  <->  ( F  |`  A ) : A -onto-> U. ( Kt  ( F " A ) ) ) )
2514, 24mpbid 222 . 2  |-  ( ph  ->  ( F  |`  A ) : A -onto-> U. ( Kt  ( F " A ) ) )
263cnrest 21089 . . . 4  |-  ( ( F  e.  ( J  Cn  K )  /\  A  C_  X )  -> 
( F  |`  A )  e.  ( ( Jt  A )  Cn  K ) )
272, 9, 26syl2anc 693 . . 3  |-  ( ph  ->  ( F  |`  A )  e.  ( ( Jt  A )  Cn  K ) )
284toptopon 20722 . . . . 5  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
2916, 28sylib 208 . . . 4  |-  ( ph  ->  K  e.  (TopOn `  U. K ) )
30 df-ima 5127 . . . . 5  |-  ( F
" A )  =  ran  ( F  |`  A )
31 eqimss2 3658 . . . . 5  |-  ( ( F " A )  =  ran  ( F  |`  A )  ->  ran  ( F  |`  A ) 
C_  ( F " A ) )
3230, 31mp1i 13 . . . 4  |-  ( ph  ->  ran  ( F  |`  A )  C_  ( F " A ) )
33 cnrest2 21090 . . . 4  |-  ( ( K  e.  (TopOn `  U. K )  /\  ran  ( F  |`  A ) 
C_  ( F " A )  /\  ( F " A )  C_  U. K )  ->  (
( F  |`  A )  e.  ( ( Jt  A )  Cn  K )  <-> 
( F  |`  A )  e.  ( ( Jt  A )  Cn  ( Kt  ( F " A ) ) ) ) )
3429, 32, 20, 33syl3anc 1326 . . 3  |-  ( ph  ->  ( ( F  |`  A )  e.  ( ( Jt  A )  Cn  K
)  <->  ( F  |`  A )  e.  ( ( Jt  A )  Cn  ( Kt  ( F " A ) ) ) ) )
3527, 34mpbid 222 . 2  |-  ( ph  ->  ( F  |`  A )  e.  ( ( Jt  A )  Cn  ( Kt  ( F " A ) ) ) )
36 eqid 2622 . . 3  |-  U. ( Kt  ( F " A ) )  =  U. ( Kt  ( F " A ) )
3736cnconn 21225 . 2  |-  ( ( ( Jt  A )  e. Conn  /\  ( F  |`  A ) : A -onto-> U. ( Kt  ( F " A ) )  /\  ( F  |`  A )  e.  ( ( Jt  A )  Cn  ( Kt  ( F " A ) ) ) )  -> 
( Kt  ( F " A ) )  e. Conn
)
381, 25, 35, 37syl3anc 1326 1  |-  ( ph  ->  ( Kt  ( F " A ) )  e. Conn
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    = wceq 1483    e. wcel 1990    C_ wss 3574   U.cuni 4436   dom cdm 5114   ran crn 5115    |` cres 5116   "cima 5117   Fun wfun 5882   -->wf 5884   -onto->wfo 5886   ` cfv 5888  (class class class)co 6650   ↾t crest 16081   Topctop 20698  TopOnctopon 20715    Cn ccn 21028  Conncconn 21214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-fin 7959  df-fi 8317  df-rest 16083  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-cld 20823  df-cn 21031  df-conn 21215
This theorem is referenced by:  tgpconncompeqg  21915  tgpconncomp  21916
  Copyright terms: Public domain W3C validator