| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > connima | Structured version Visualization version Unicode version | ||
| Description: The image of a connected set is connected. (Contributed by Mario Carneiro, 7-Jul-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| connima.x |
|
| connima.f |
|
| connima.a |
|
| connima.c |
|
| Ref | Expression |
|---|---|
| connima |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | connima.c |
. 2
| |
| 2 | connima.f |
. . . . . 6
| |
| 3 | connima.x |
. . . . . . 7
| |
| 4 | eqid 2622 |
. . . . . . 7
| |
| 5 | 3, 4 | cnf 21050 |
. . . . . 6
|
| 6 | 2, 5 | syl 17 |
. . . . 5
|
| 7 | ffun 6048 |
. . . . 5
| |
| 8 | 6, 7 | syl 17 |
. . . 4
|
| 9 | connima.a |
. . . . 5
| |
| 10 | fdm 6051 |
. . . . . 6
| |
| 11 | 6, 10 | syl 17 |
. . . . 5
|
| 12 | 9, 11 | sseqtr4d 3642 |
. . . 4
|
| 13 | fores 6124 |
. . . 4
| |
| 14 | 8, 12, 13 | syl2anc 693 |
. . 3
|
| 15 | cntop2 21045 |
. . . . . 6
| |
| 16 | 2, 15 | syl 17 |
. . . . 5
|
| 17 | imassrn 5477 |
. . . . . 6
| |
| 18 | frn 6053 |
. . . . . . 7
| |
| 19 | 6, 18 | syl 17 |
. . . . . 6
|
| 20 | 17, 19 | syl5ss 3614 |
. . . . 5
|
| 21 | 4 | restuni 20966 |
. . . . 5
|
| 22 | 16, 20, 21 | syl2anc 693 |
. . . 4
|
| 23 | foeq3 6113 |
. . . 4
| |
| 24 | 22, 23 | syl 17 |
. . 3
|
| 25 | 14, 24 | mpbid 222 |
. 2
|
| 26 | 3 | cnrest 21089 |
. . . 4
|
| 27 | 2, 9, 26 | syl2anc 693 |
. . 3
|
| 28 | 4 | toptopon 20722 |
. . . . 5
|
| 29 | 16, 28 | sylib 208 |
. . . 4
|
| 30 | df-ima 5127 |
. . . . 5
| |
| 31 | eqimss2 3658 |
. . . . 5
| |
| 32 | 30, 31 | mp1i 13 |
. . . 4
|
| 33 | cnrest2 21090 |
. . . 4
| |
| 34 | 29, 32, 20, 33 | syl3anc 1326 |
. . 3
|
| 35 | 27, 34 | mpbid 222 |
. 2
|
| 36 | eqid 2622 |
. . 3
| |
| 37 | 36 | cnconn 21225 |
. 2
|
| 38 | 1, 25, 35, 37 | syl3anc 1326 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-oadd 7564 df-er 7742 df-map 7859 df-en 7956 df-fin 7959 df-fi 8317 df-rest 16083 df-topgen 16104 df-top 20699 df-topon 20716 df-bases 20750 df-cld 20823 df-cn 21031 df-conn 21215 |
| This theorem is referenced by: tgpconncompeqg 21915 tgpconncomp 21916 |
| Copyright terms: Public domain | W3C validator |