Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpg Structured version   Visualization version   Unicode version

Theorem elpg 42457
Description: Membership in the class of partizan games. In ONAG this is stated as "If  L and  R are any two sets of games, then there is a game  { L  |  R }. All games are constructed in this way." The first sentence corresponds to the backward direction of our theorem, and the second to the forward direction. (Contributed by Emmett Weisz, 27-Aug-2021.)
Assertion
Ref Expression
elpg  |-  ( A  e. Pg 
<->  ( A  e.  ( _V  X.  _V )  /\  ( 1st `  A
)  C_ Pg  /\  ( 2nd `  A )  C_ Pg )
)

Proof of Theorem elpg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elpglem1 42454 . . . 4  |-  ( E. x ( x  C_ Pg  /\  ( ( 1st `  A
)  e.  ~P x  /\  ( 2nd `  A
)  e.  ~P x
) )  ->  (
( 1st `  A
)  C_ Pg  /\  ( 2nd `  A )  C_ Pg )
)
2 elpglem2 42455 . . . 4  |-  ( ( ( 1st `  A
)  C_ Pg  /\  ( 2nd `  A )  C_ Pg )  ->  E. x ( x 
C_ Pg  /\  ( ( 1st `  A )  e.  ~P x  /\  ( 2nd `  A
)  e.  ~P x
) ) )
31, 2impbii 199 . . 3  |-  ( E. x ( x  C_ Pg  /\  ( ( 1st `  A
)  e.  ~P x  /\  ( 2nd `  A
)  e.  ~P x
) )  <->  ( ( 1st `  A )  C_ Pg  /\  ( 2nd `  A
)  C_ Pg ) )
43anbi2i 730 . 2  |-  ( ( A  e.  ( _V 
X.  _V )  /\  E. x ( x  C_ Pg  /\  ( ( 1st `  A
)  e.  ~P x  /\  ( 2nd `  A
)  e.  ~P x
) ) )  <->  ( A  e.  ( _V  X.  _V )  /\  ( ( 1st `  A )  C_ Pg  /\  ( 2nd `  A )  C_ Pg ) ) )
5 df-pg 42453 . . . 4  |- Pg  = setrecs (
( y  e.  _V  |->  ( ~P y  X.  ~P y ) ) )
65elsetrecs 42445 . . 3  |-  ( A  e. Pg 
<->  E. x ( x 
C_ Pg  /\  A  e.  ( ( y  e.  _V  |->  ( ~P y  X.  ~P y ) ) `  x ) ) )
7 elpglem3 42456 . . 3  |-  ( E. x ( x  C_ Pg  /\  A  e.  ( ( y  e.  _V  |->  ( ~P y  X.  ~P y ) ) `  x ) )  <->  ( A  e.  ( _V  X.  _V )  /\  E. x ( x  C_ Pg  /\  (
( 1st `  A
)  e.  ~P x  /\  ( 2nd `  A
)  e.  ~P x
) ) ) )
86, 7bitri 264 . 2  |-  ( A  e. Pg 
<->  ( A  e.  ( _V  X.  _V )  /\  E. x ( x 
C_ Pg  /\  ( ( 1st `  A )  e.  ~P x  /\  ( 2nd `  A
)  e.  ~P x
) ) ) )
9 3anass 1042 . 2  |-  ( ( A  e.  ( _V 
X.  _V )  /\  ( 1st `  A )  C_ Pg  /\  ( 2nd `  A
)  C_ Pg )  <->  ( A  e.  ( _V  X.  _V )  /\  ( ( 1st `  A )  C_ Pg  /\  ( 2nd `  A )  C_ Pg ) ) )
104, 8, 93bitr4i 292 1  |-  ( A  e. Pg 
<->  ( A  e.  ( _V  X.  _V )  /\  ( 1st `  A
)  C_ Pg  /\  ( 2nd `  A )  C_ Pg )
)
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    /\ w3a 1037   E.wex 1704    e. wcel 1990   _Vcvv 3200    C_ wss 3574   ~Pcpw 4158    |-> cmpt 4729    X. cxp 5112   ` cfv 5888   1stc1st 7166   2ndc2nd 7167  Pgcpg 42452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-reg 8497  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-r1 8627  df-rank 8628  df-setrecs 42431  df-pg 42453
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator