MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1opwfi Structured version   Visualization version   Unicode version

Theorem f1opwfi 8270
Description: A one-to-one mapping induces a one-to-one mapping on finite subsets. (Contributed by Mario Carneiro, 25-Jan-2015.)
Assertion
Ref Expression
f1opwfi  |-  ( F : A -1-1-onto-> B  ->  ( b  e.  ( ~P A  i^i  Fin )  |->  ( F "
b ) ) : ( ~P A  i^i  Fin ) -1-1-onto-> ( ~P B  i^i  Fin ) )
Distinct variable groups:    A, b    B, b    F, b

Proof of Theorem f1opwfi
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . 2  |-  ( b  e.  ( ~P A  i^i  Fin )  |->  ( F
" b ) )  =  ( b  e.  ( ~P A  i^i  Fin )  |->  ( F "
b ) )
2 imassrn 5477 . . . . . 6  |-  ( F
" b )  C_  ran  F
3 f1ofo 6144 . . . . . . 7  |-  ( F : A -1-1-onto-> B  ->  F : A -onto-> B )
4 forn 6118 . . . . . . 7  |-  ( F : A -onto-> B  ->  ran  F  =  B )
53, 4syl 17 . . . . . 6  |-  ( F : A -1-1-onto-> B  ->  ran  F  =  B )
62, 5syl5sseq 3653 . . . . 5  |-  ( F : A -1-1-onto-> B  ->  ( F " b )  C_  B
)
76adantr 481 . . . 4  |-  ( ( F : A -1-1-onto-> B  /\  b  e.  ( ~P A  i^i  Fin ) )  ->  ( F "
b )  C_  B
)
8 inss2 3834 . . . . . . 7  |-  ( ~P A  i^i  Fin )  C_ 
Fin
9 simpr 477 . . . . . . 7  |-  ( ( F : A -1-1-onto-> B  /\  b  e.  ( ~P A  i^i  Fin ) )  ->  b  e.  ( ~P A  i^i  Fin ) )
108, 9sseldi 3601 . . . . . 6  |-  ( ( F : A -1-1-onto-> B  /\  b  e.  ( ~P A  i^i  Fin ) )  ->  b  e.  Fin )
11 f1ofun 6139 . . . . . . . 8  |-  ( F : A -1-1-onto-> B  ->  Fun  F )
1211adantr 481 . . . . . . 7  |-  ( ( F : A -1-1-onto-> B  /\  b  e.  ( ~P A  i^i  Fin ) )  ->  Fun  F )
13 inss1 3833 . . . . . . . . . . 11  |-  ( ~P A  i^i  Fin )  C_ 
~P A
1413sseli 3599 . . . . . . . . . 10  |-  ( b  e.  ( ~P A  i^i  Fin )  ->  b  e.  ~P A )
15 elpwi 4168 . . . . . . . . . 10  |-  ( b  e.  ~P A  -> 
b  C_  A )
1614, 15syl 17 . . . . . . . . 9  |-  ( b  e.  ( ~P A  i^i  Fin )  ->  b  C_  A )
1716adantl 482 . . . . . . . 8  |-  ( ( F : A -1-1-onto-> B  /\  b  e.  ( ~P A  i^i  Fin ) )  ->  b  C_  A
)
18 f1odm 6141 . . . . . . . . 9  |-  ( F : A -1-1-onto-> B  ->  dom  F  =  A )
1918adantr 481 . . . . . . . 8  |-  ( ( F : A -1-1-onto-> B  /\  b  e.  ( ~P A  i^i  Fin ) )  ->  dom  F  =  A )
2017, 19sseqtr4d 3642 . . . . . . 7  |-  ( ( F : A -1-1-onto-> B  /\  b  e.  ( ~P A  i^i  Fin ) )  ->  b  C_  dom  F )
21 fores 6124 . . . . . . 7  |-  ( ( Fun  F  /\  b  C_ 
dom  F )  -> 
( F  |`  b
) : b -onto-> ( F " b ) )
2212, 20, 21syl2anc 693 . . . . . 6  |-  ( ( F : A -1-1-onto-> B  /\  b  e.  ( ~P A  i^i  Fin ) )  ->  ( F  |`  b ) : b
-onto-> ( F " b
) )
23 fofi 8252 . . . . . 6  |-  ( ( b  e.  Fin  /\  ( F  |`  b ) : b -onto-> ( F
" b ) )  ->  ( F "
b )  e.  Fin )
2410, 22, 23syl2anc 693 . . . . 5  |-  ( ( F : A -1-1-onto-> B  /\  b  e.  ( ~P A  i^i  Fin ) )  ->  ( F "
b )  e.  Fin )
25 elpwg 4166 . . . . 5  |-  ( ( F " b )  e.  Fin  ->  (
( F " b
)  e.  ~P B  <->  ( F " b ) 
C_  B ) )
2624, 25syl 17 . . . 4  |-  ( ( F : A -1-1-onto-> B  /\  b  e.  ( ~P A  i^i  Fin ) )  ->  ( ( F
" b )  e. 
~P B  <->  ( F " b )  C_  B
) )
277, 26mpbird 247 . . 3  |-  ( ( F : A -1-1-onto-> B  /\  b  e.  ( ~P A  i^i  Fin ) )  ->  ( F "
b )  e.  ~P B )
2827, 24elind 3798 . 2  |-  ( ( F : A -1-1-onto-> B  /\  b  e.  ( ~P A  i^i  Fin ) )  ->  ( F "
b )  e.  ( ~P B  i^i  Fin ) )
29 imassrn 5477 . . . . . 6  |-  ( `' F " a ) 
C_  ran  `' F
30 dfdm4 5316 . . . . . . 7  |-  dom  F  =  ran  `' F
3130, 18syl5eqr 2670 . . . . . 6  |-  ( F : A -1-1-onto-> B  ->  ran  `' F  =  A )
3229, 31syl5sseq 3653 . . . . 5  |-  ( F : A -1-1-onto-> B  ->  ( `' F " a )  C_  A )
3332adantr 481 . . . 4  |-  ( ( F : A -1-1-onto-> B  /\  a  e.  ( ~P B  i^i  Fin ) )  ->  ( `' F " a )  C_  A
)
34 inss2 3834 . . . . . . 7  |-  ( ~P B  i^i  Fin )  C_ 
Fin
35 simpr 477 . . . . . . 7  |-  ( ( F : A -1-1-onto-> B  /\  a  e.  ( ~P B  i^i  Fin ) )  ->  a  e.  ( ~P B  i^i  Fin ) )
3634, 35sseldi 3601 . . . . . 6  |-  ( ( F : A -1-1-onto-> B  /\  a  e.  ( ~P B  i^i  Fin ) )  ->  a  e.  Fin )
37 dff1o3 6143 . . . . . . . . 9  |-  ( F : A -1-1-onto-> B  <->  ( F : A -onto-> B  /\  Fun  `' F ) )
3837simprbi 480 . . . . . . . 8  |-  ( F : A -1-1-onto-> B  ->  Fun  `' F
)
3938adantr 481 . . . . . . 7  |-  ( ( F : A -1-1-onto-> B  /\  a  e.  ( ~P B  i^i  Fin ) )  ->  Fun  `' F
)
40 inss1 3833 . . . . . . . . . . 11  |-  ( ~P B  i^i  Fin )  C_ 
~P B
4140sseli 3599 . . . . . . . . . 10  |-  ( a  e.  ( ~P B  i^i  Fin )  ->  a  e.  ~P B )
4241adantl 482 . . . . . . . . 9  |-  ( ( F : A -1-1-onto-> B  /\  a  e.  ( ~P B  i^i  Fin ) )  ->  a  e.  ~P B )
43 elpwi 4168 . . . . . . . . 9  |-  ( a  e.  ~P B  -> 
a  C_  B )
4442, 43syl 17 . . . . . . . 8  |-  ( ( F : A -1-1-onto-> B  /\  a  e.  ( ~P B  i^i  Fin ) )  ->  a  C_  B
)
45 f1ocnv 6149 . . . . . . . . . 10  |-  ( F : A -1-1-onto-> B  ->  `' F : B -1-1-onto-> A )
4645adantr 481 . . . . . . . . 9  |-  ( ( F : A -1-1-onto-> B  /\  a  e.  ( ~P B  i^i  Fin ) )  ->  `' F : B
-1-1-onto-> A )
47 f1odm 6141 . . . . . . . . 9  |-  ( `' F : B -1-1-onto-> A  ->  dom  `' F  =  B
)
4846, 47syl 17 . . . . . . . 8  |-  ( ( F : A -1-1-onto-> B  /\  a  e.  ( ~P B  i^i  Fin ) )  ->  dom  `' F  =  B )
4944, 48sseqtr4d 3642 . . . . . . 7  |-  ( ( F : A -1-1-onto-> B  /\  a  e.  ( ~P B  i^i  Fin ) )  ->  a  C_  dom  `' F )
50 fores 6124 . . . . . . 7  |-  ( ( Fun  `' F  /\  a  C_  dom  `' F
)  ->  ( `' F  |`  a ) : a -onto-> ( `' F " a ) )
5139, 49, 50syl2anc 693 . . . . . 6  |-  ( ( F : A -1-1-onto-> B  /\  a  e.  ( ~P B  i^i  Fin ) )  ->  ( `' F  |`  a ) : a
-onto-> ( `' F "
a ) )
52 fofi 8252 . . . . . 6  |-  ( ( a  e.  Fin  /\  ( `' F  |`  a ) : a -onto-> ( `' F " a ) )  ->  ( `' F " a )  e. 
Fin )
5336, 51, 52syl2anc 693 . . . . 5  |-  ( ( F : A -1-1-onto-> B  /\  a  e.  ( ~P B  i^i  Fin ) )  ->  ( `' F " a )  e.  Fin )
54 elpwg 4166 . . . . 5  |-  ( ( `' F " a )  e.  Fin  ->  (
( `' F "
a )  e.  ~P A 
<->  ( `' F "
a )  C_  A
) )
5553, 54syl 17 . . . 4  |-  ( ( F : A -1-1-onto-> B  /\  a  e.  ( ~P B  i^i  Fin ) )  ->  ( ( `' F " a )  e.  ~P A  <->  ( `' F " a )  C_  A ) )
5633, 55mpbird 247 . . 3  |-  ( ( F : A -1-1-onto-> B  /\  a  e.  ( ~P B  i^i  Fin ) )  ->  ( `' F " a )  e.  ~P A )
5756, 53elind 3798 . 2  |-  ( ( F : A -1-1-onto-> B  /\  a  e.  ( ~P B  i^i  Fin ) )  ->  ( `' F " a )  e.  ( ~P A  i^i  Fin ) )
5814, 41anim12i 590 . . 3  |-  ( ( b  e.  ( ~P A  i^i  Fin )  /\  a  e.  ( ~P B  i^i  Fin )
)  ->  ( b  e.  ~P A  /\  a  e.  ~P B ) )
5943adantl 482 . . . . . . 7  |-  ( ( b  e.  ~P A  /\  a  e.  ~P B )  ->  a  C_  B )
60 foimacnv 6154 . . . . . . 7  |-  ( ( F : A -onto-> B  /\  a  C_  B )  ->  ( F "
( `' F "
a ) )  =  a )
613, 59, 60syl2an 494 . . . . . 6  |-  ( ( F : A -1-1-onto-> B  /\  ( b  e.  ~P A  /\  a  e.  ~P B ) )  -> 
( F " ( `' F " a ) )  =  a )
6261eqcomd 2628 . . . . 5  |-  ( ( F : A -1-1-onto-> B  /\  ( b  e.  ~P A  /\  a  e.  ~P B ) )  -> 
a  =  ( F
" ( `' F " a ) ) )
63 imaeq2 5462 . . . . . 6  |-  ( b  =  ( `' F " a )  ->  ( F " b )  =  ( F " ( `' F " a ) ) )
6463eqeq2d 2632 . . . . 5  |-  ( b  =  ( `' F " a )  ->  (
a  =  ( F
" b )  <->  a  =  ( F " ( `' F " a ) ) ) )
6562, 64syl5ibrcom 237 . . . 4  |-  ( ( F : A -1-1-onto-> B  /\  ( b  e.  ~P A  /\  a  e.  ~P B ) )  -> 
( b  =  ( `' F " a )  ->  a  =  ( F " b ) ) )
66 f1of1 6136 . . . . . . 7  |-  ( F : A -1-1-onto-> B  ->  F : A -1-1-> B )
6715adantr 481 . . . . . . 7  |-  ( ( b  e.  ~P A  /\  a  e.  ~P B )  ->  b  C_  A )
68 f1imacnv 6153 . . . . . . 7  |-  ( ( F : A -1-1-> B  /\  b  C_  A )  ->  ( `' F " ( F " b
) )  =  b )
6966, 67, 68syl2an 494 . . . . . 6  |-  ( ( F : A -1-1-onto-> B  /\  ( b  e.  ~P A  /\  a  e.  ~P B ) )  -> 
( `' F "
( F " b
) )  =  b )
7069eqcomd 2628 . . . . 5  |-  ( ( F : A -1-1-onto-> B  /\  ( b  e.  ~P A  /\  a  e.  ~P B ) )  -> 
b  =  ( `' F " ( F
" b ) ) )
71 imaeq2 5462 . . . . . 6  |-  ( a  =  ( F "
b )  ->  ( `' F " a )  =  ( `' F " ( F " b
) ) )
7271eqeq2d 2632 . . . . 5  |-  ( a  =  ( F "
b )  ->  (
b  =  ( `' F " a )  <-> 
b  =  ( `' F " ( F
" b ) ) ) )
7370, 72syl5ibrcom 237 . . . 4  |-  ( ( F : A -1-1-onto-> B  /\  ( b  e.  ~P A  /\  a  e.  ~P B ) )  -> 
( a  =  ( F " b )  ->  b  =  ( `' F " a ) ) )
7465, 73impbid 202 . . 3  |-  ( ( F : A -1-1-onto-> B  /\  ( b  e.  ~P A  /\  a  e.  ~P B ) )  -> 
( b  =  ( `' F " a )  <-> 
a  =  ( F
" b ) ) )
7558, 74sylan2 491 . 2  |-  ( ( F : A -1-1-onto-> B  /\  ( b  e.  ( ~P A  i^i  Fin )  /\  a  e.  ( ~P B  i^i  Fin ) ) )  -> 
( b  =  ( `' F " a )  <-> 
a  =  ( F
" b ) ) )
761, 28, 57, 75f1o2d 6887 1  |-  ( F : A -1-1-onto-> B  ->  ( b  e.  ( ~P A  i^i  Fin )  |->  ( F "
b ) ) : ( ~P A  i^i  Fin ) -1-1-onto-> ( ~P B  i^i  Fin ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    i^i cin 3573    C_ wss 3574   ~Pcpw 4158    |-> cmpt 4729   `'ccnv 5113   dom cdm 5114   ran crn 5115    |` cres 5116   "cima 5117   Fun wfun 5882   -1-1->wf1 5885   -onto->wfo 5886   -1-1-onto->wf1o 5887   Fincfn 7955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-fin 7959
This theorem is referenced by:  fictb  9067  ackbijnn  14560  tsmsf1o  21948  eulerpartgbij  30434
  Copyright terms: Public domain W3C validator