| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1opwfi | Structured version Visualization version Unicode version | ||
| Description: A one-to-one mapping induces a one-to-one mapping on finite subsets. (Contributed by Mario Carneiro, 25-Jan-2015.) |
| Ref | Expression |
|---|---|
| f1opwfi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2622 |
. 2
| |
| 2 | imassrn 5477 |
. . . . . 6
| |
| 3 | f1ofo 6144 |
. . . . . . 7
| |
| 4 | forn 6118 |
. . . . . . 7
| |
| 5 | 3, 4 | syl 17 |
. . . . . 6
|
| 6 | 2, 5 | syl5sseq 3653 |
. . . . 5
|
| 7 | 6 | adantr 481 |
. . . 4
|
| 8 | inss2 3834 |
. . . . . . 7
| |
| 9 | simpr 477 |
. . . . . . 7
| |
| 10 | 8, 9 | sseldi 3601 |
. . . . . 6
|
| 11 | f1ofun 6139 |
. . . . . . . 8
| |
| 12 | 11 | adantr 481 |
. . . . . . 7
|
| 13 | inss1 3833 |
. . . . . . . . . . 11
| |
| 14 | 13 | sseli 3599 |
. . . . . . . . . 10
|
| 15 | elpwi 4168 |
. . . . . . . . . 10
| |
| 16 | 14, 15 | syl 17 |
. . . . . . . . 9
|
| 17 | 16 | adantl 482 |
. . . . . . . 8
|
| 18 | f1odm 6141 |
. . . . . . . . 9
| |
| 19 | 18 | adantr 481 |
. . . . . . . 8
|
| 20 | 17, 19 | sseqtr4d 3642 |
. . . . . . 7
|
| 21 | fores 6124 |
. . . . . . 7
| |
| 22 | 12, 20, 21 | syl2anc 693 |
. . . . . 6
|
| 23 | fofi 8252 |
. . . . . 6
| |
| 24 | 10, 22, 23 | syl2anc 693 |
. . . . 5
|
| 25 | elpwg 4166 |
. . . . 5
| |
| 26 | 24, 25 | syl 17 |
. . . 4
|
| 27 | 7, 26 | mpbird 247 |
. . 3
|
| 28 | 27, 24 | elind 3798 |
. 2
|
| 29 | imassrn 5477 |
. . . . . 6
| |
| 30 | dfdm4 5316 |
. . . . . . 7
| |
| 31 | 30, 18 | syl5eqr 2670 |
. . . . . 6
|
| 32 | 29, 31 | syl5sseq 3653 |
. . . . 5
|
| 33 | 32 | adantr 481 |
. . . 4
|
| 34 | inss2 3834 |
. . . . . . 7
| |
| 35 | simpr 477 |
. . . . . . 7
| |
| 36 | 34, 35 | sseldi 3601 |
. . . . . 6
|
| 37 | dff1o3 6143 |
. . . . . . . . 9
| |
| 38 | 37 | simprbi 480 |
. . . . . . . 8
|
| 39 | 38 | adantr 481 |
. . . . . . 7
|
| 40 | inss1 3833 |
. . . . . . . . . . 11
| |
| 41 | 40 | sseli 3599 |
. . . . . . . . . 10
|
| 42 | 41 | adantl 482 |
. . . . . . . . 9
|
| 43 | elpwi 4168 |
. . . . . . . . 9
| |
| 44 | 42, 43 | syl 17 |
. . . . . . . 8
|
| 45 | f1ocnv 6149 |
. . . . . . . . . 10
| |
| 46 | 45 | adantr 481 |
. . . . . . . . 9
|
| 47 | f1odm 6141 |
. . . . . . . . 9
| |
| 48 | 46, 47 | syl 17 |
. . . . . . . 8
|
| 49 | 44, 48 | sseqtr4d 3642 |
. . . . . . 7
|
| 50 | fores 6124 |
. . . . . . 7
| |
| 51 | 39, 49, 50 | syl2anc 693 |
. . . . . 6
|
| 52 | fofi 8252 |
. . . . . 6
| |
| 53 | 36, 51, 52 | syl2anc 693 |
. . . . 5
|
| 54 | elpwg 4166 |
. . . . 5
| |
| 55 | 53, 54 | syl 17 |
. . . 4
|
| 56 | 33, 55 | mpbird 247 |
. . 3
|
| 57 | 56, 53 | elind 3798 |
. 2
|
| 58 | 14, 41 | anim12i 590 |
. . 3
|
| 59 | 43 | adantl 482 |
. . . . . . 7
|
| 60 | foimacnv 6154 |
. . . . . . 7
| |
| 61 | 3, 59, 60 | syl2an 494 |
. . . . . 6
|
| 62 | 61 | eqcomd 2628 |
. . . . 5
|
| 63 | imaeq2 5462 |
. . . . . 6
| |
| 64 | 63 | eqeq2d 2632 |
. . . . 5
|
| 65 | 62, 64 | syl5ibrcom 237 |
. . . 4
|
| 66 | f1of1 6136 |
. . . . . . 7
| |
| 67 | 15 | adantr 481 |
. . . . . . 7
|
| 68 | f1imacnv 6153 |
. . . . . . 7
| |
| 69 | 66, 67, 68 | syl2an 494 |
. . . . . 6
|
| 70 | 69 | eqcomd 2628 |
. . . . 5
|
| 71 | imaeq2 5462 |
. . . . . 6
| |
| 72 | 71 | eqeq2d 2632 |
. . . . 5
|
| 73 | 70, 72 | syl5ibrcom 237 |
. . . 4
|
| 74 | 65, 73 | impbid 202 |
. . 3
|
| 75 | 58, 74 | sylan2 491 |
. 2
|
| 76 | 1, 28, 57, 75 | f1o2d 6887 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-om 7066 df-1o 7560 df-er 7742 df-en 7956 df-dom 7957 df-fin 7959 |
| This theorem is referenced by: fictb 9067 ackbijnn 14560 tsmsf1o 21948 eulerpartgbij 30434 |
| Copyright terms: Public domain | W3C validator |